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1 Abstract

This document describes accumulated experience of usage ofthe software modules that were
developed in WP3 tasks T3.2 and Task 3.3. A set of test structures is presented that have served
as important benchmarks to test the correct operation of thecode that was developed in these
tasks. Besides these "benchmarks" , we also present the use of the software for an industrial
design study.
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2 Introduction

Software development remains a futile e�ort without intensive testing. It is interesting to note
that in the testing phase, Pareto's law seems to be remarkably well respected: Removing the last
10% of the causes for failures consumes 90% of the e�ort. While developing the software tools
in Tasks T3.2 and T3.3, we can only con�rm this observation. Therefore, it really makes sense
to report on the gathered experience during the developmentof the software such that valuable
recommendations can be extracted for future projects. Moreover, it also allows the users of the
software to esteem its intrinsic quality and validity of the numerical results that are produced.
This document is divided in several chapters which can be read more or less independently.
Each chapter describes a speci�c test path and the paths are rather independent. One will �nd
a rather accurate mapping of the activities described in thedescription of work on the chapters
in this document.

3 RF Boundary conditions

The RF boundary conditions have been part of the developmentwork (see Task 3.2). When
completing the contour integral for a link on the surface of the simulation domain, the magnetic
induction must be completed outside the simulation domain. This is done by noting that the
missing part corresponds to

@A==

@n . Finally, being in the 'free-wave' regime, we assume that the
latter can be assigned to radiation of a TE wave, which bounces perpendicular at the surface of
the simulation domain. This wave is described by

@A==

@n
�

j!
c

A== = 0 (1)

The implementation has been tested on the test structure described in D3.1 chapter 6 (Inductor
with grounded guard).
This case was studied in depth because the guard ring has somesurprisingly tricky aspects
concerning the role of grounding a guard ring.
As is seen in Fig. 1, the magnetic �eld is not dropping to zero when the boundary of the
simulation domain is reached.

In order to appreciate the problem, let us describe the paradox that pops up when a detailed
analysis is made of the experimental set up. The basic question is: "Where is the ground?" An
experimental set up consists of attaching probes to the signal pads on the test structure. Fig. 8
in D3.2 gives a clear illustration of the set up (see here Fig.3). The outer conductors (shields)
of the coax cables are connected to a common ground in the VNA (Vector Network Analyser).
For a symmetric set up, we may expect this common ground is also found at the left and right
ground pads of the device under test.

In general the theoretical analysis of the coax wires leads to two important observations:

� The current on the inner wire is equal and opposite to the current on the shield

� The voltage di�erence is given by the path-independent line integral of the electric �eld
from the inner wire to the shield.

From these two observations, the computation of s-parameters can be done by loading ports
with a given impedance and take one port for excitation. Thisis illustrated in Fig. 4.
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Figure 1: Magnetic induction at 1GHz radiating out of the spiral inductor. With RF boundary
condition the �eld di�ers from zero at the edge (top/bottom) of the simulation domain.

Figure 2: Illustration of the s-parameter measurement set up

As can be seen from Fig. 4, there will be a voltage value higherthan zero at the "ground"
contact at the port that is closed by the impedance Z0. Indeed, the simulation of the device
under test shows that at the contacts we �nd the following currents and voltages
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Figure 3: Illustration of the contact pads for the device under test

Figure 4: Illustration of the s-parameter measurement set up

<mode>port 1 drive</mode>
<iterations>

<simultaneous>4</simultaneous>
</iterations>
<contact>

<name>s1</name>
<current>

<re>-1.795945917651e-02</re>
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<im>4.547205257826e-03</im>
</current>
<voltage>

<re>1.000000000000e+00</re>// applied bias
<im>0.000000000000e+00</im>

</voltage>
</contact>

<contact>
<name>s2</name>
<current>

<re>1.724086402763e-02</re>// current into Z0
<im>-5.792024534297e-03</im>

</current>
<voltage>

<re>8.612430634501e-01</re>
<im>-2.768541083984e-01</im>

</voltage>
</contact>

<contact>
<name>g1</name>
<current>

<re>1.794887081855e-02</re>
<im>-4.474825803950e-03</im>

</current>
<voltage>

<re>0.000000000000e+00</re>
<im>0.000000000000e+00</im>

</voltage>
</contact>
<contact>

<name>g2</name>
<current>

<re>-1.719576309564e-02</re>// current out of Z0
<im>5.927621046340e-03</im>

</current>
<voltage>

<re>3.810057208711e-03</re>// voltage at "ground" of Z0
<im>8.892285617532e-03</im>

</voltage>
</contact>
<contact>

As can be seen the voltage at the ground pad of the impedance di�ers from zero. The paradox
arises if we want to link up this observation with the experimental set up. The question is:
"What is correct voltage distribution along the closed loop of the two coax wire shields and
the ground pads?" The answer is that the assumption of ideal grounds for this set up is not
correct! As a consequence the result as given above is correct and the voltage at g2 is not equal
to zero. There is a phase delay between the grounds g1 and g2. This delay is determined by
the conductance of the metal in M1. A careful view inside thislayer also reveals a current 
ow
in opposite direction as the inductor. Therefore, the e�ective inductance appears less as what

6



would expect for the static case. We found that the static inductance is 2.5 nH. For 1GHz we
obtain without the use of Hodge operator modi�cations, an inductance of L=2.16 nH. Using
the same set up for Neumann boundary conditions on the vectorpotential we �nd that L =
2.72 nH. Thus the test case clearly shows an impact on the inductance that compensates for an
under-estimation with Dirichlet's boundary conditions.

Figure 5: Illustration of the RF boundary conditions implem entation: the 'missing B' can be
assigned to

@A==

@n .
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4 Transient Development Software Test Structures

In this chapter we will describe the test structures that were developed to develop the code
during development phase. These structure are mainly intended to achieve good communication
between the solver and the GUI, as well as for building the post-processing facilities. There
are three structures which have been intensively used during programming: the �rst structure
consists of three layers of material of which the middle layer contains a semi-closed ring of
metal. The structure is depicted in Fig. 6. The advantage of such a small structure is that

Figure 6: Simple test structure based in three layers of material with semi-closed loop inside

one can manually count the number of nodes, number of links contact nodes et cetera. As a
consequence, we know how much degrees of freedom this systemgenerates. A next simple test
structure includes one more layer. This layer is a conductive substrate. The substrate can be
either semiconductor or insulator. The structure is shown in Fig. 7. Finally, we can modify
the conducting ring by replacing the material with doped silicon.

5 Test of the Transient Solver on Large Inductors

In this chapter, we present the application of the transient solver to a large-scale inductor above
a substrate. The structure is described in D3.1 Chapter 7. However, this time the analysis is
performed in the transient regime. The layout of the structure is shown in Fig. 8.
The result of the transient simulation is shown in Fig. 9. From these �gures, we are able to read
o� the inductance as well as the capacitive coupling to the substrate.
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Figure 7: Simple test structure based in four layers of material with semi-closed loop inside

Figure 8: Lay-out of the 4.5 winding inductor above substrate.

6 Industrial Inductor Optimization

In this chapter we discuss the optimization and characterization of an inductor that is designed
at NXP for building completely integrated systems on chip. Figure 10 illustrates the SoC.
Linear modeling of oscillators does not provide accurate solutions and in most cases is not able
to capture subtle nonlinear dynamics of oscillators (injection locking, jitter, etc). Therefore,
nonlinear models are necessary which are fast, accurate andgeneric. Whereas, these models
have been generated in the frequency domain, these modelingapproaches are limited to small-
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Figure 9: Result for the inductor current and substrate currents as a function of time.

signal characteristics. In the time domain we can access also there large-signal response. The
inductor is designed for minimal substrate coupling by having opposite current circulations. The
structure is shown in Fig. 11
Q-factors of di�erent 8-shape coils have been computed using Momentum for di�erent crossings
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Figure 10: SoC with octo-shape inductor

Figure 11: Inductor layout for optimized Q factors

of the two windings:

� Double 8-shape (quadratic) Q=11.70, L=1.914 nH

� One 8-shape, 2 O-shape (linear) Q=9.01, L=1.913 nH

The Q-factors of di�erent 8-shape coils have also been obtained using Sonnet for the di�erent
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crossings of the two windings:

� Double 8-shape (quadratic) Q=12.08, L=1.882 nH

� One 8-shape, 2 O-shape (linear) Q=12.15, L=1.863 nH

The next �gures (12, 13, 14) show the results for the inductance , resistance and Q-factor using
"state-of-the-art" software products.

Figure 12: Simulation results using Momentum for the resistance

Figure 13: Simulation results using Momentum for the inductance

Also some results have been obtained using the Sonnet software (Figs. 15, 16).
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Figure 14: Simulation results using Momentum for the Q factor

Figure 15: Simulation results using Sonnet for the inductance

In Fig. 17 , we show the meshing of the inductor using the MAGWEL solver. In order to obtain
acceptable coarseness in the crossing region, we need to apply mesh healing by changing the via
structure. The result is shown in Fig. 18. Actually, the meshing of these inductor structures
is very subtle. The MAGWEL software software is based on a variant of the �nite-integration
technique. (strictly speaking it generalizes the �nite int egration method.) As a consequence,
in contradistinction to a boundary element method , the complete simulation domain needs
to be meshed. Since the MAGWEL software is dedicated to microelectronic applications, the
mesh generation is specialized towards layered structures. In particular, extrusion meshing has
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Figure 16: Simulation results using Sonnet for the Q factor

been a successful way to mesh layered 3D structures e�ciently. Extrusion meshing is based on
projection of the structure nodes, next perform a 2D meshingon the projected nodes, and next
extrude the mesh into three dimensions. Unfortunately, theextrusion meshing must be done
with care for inductor structures. The via corners can give rise to very small area 2D mesh
elements which may lead to unbalanced matrices when assembling the �eld solving Newton-
Raphson matrices. In this particular example we needed to adapt the shapes of the vias in
VIA6, in order to get a mesh with tolerable sized mesh elements in 2D. Speci�c alignment
algorithms were developed to handle this particular example.

In Figs. 19 and 20 , three -dimensional screen shots of the inductor are shown.
Before turning to the transient simulation, we present the frequency domain results of the
inductor in Figs. 21, 22, 23 24 25.

6.1 Transient simulations results

The transient simulations have been performed from 0 to 1 nsec in 20 timesteps. The results are
shown below. In Fig. 26, the currents into and out of the inductor contacts are shown. Fig. 27
shows the logarithm of the inductor contact currents.

In Fig. 28, the transient current in the ground plane contact is shown. An overshoot e�ect is
observed. In Fig. 29, the current of the ground plane contactis shown in a logarithmic plot.
Clearly, two time constants are observed.
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Figure 17: Extruded Delaunay mesh for the inductor 51000 nodes

Figure 18: Adaptation of the via layer e.g. here VIA6 is shown.

The problem of lack of transient benchmark data is circumvented by starting from one of the
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Figure 19: Inductor viewed from below

Figure 20: Inductor viewed from above with a stretched vertical coordinate

benchmark cases and lift out a part that will be done with �eld solving in transient and another
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Figure 21: Resistance of the inductor
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Figure 22: Alternative extraction of resistance

part will be evaluated using a circuit simulation approach. This approach will show that a
design 
ow can be put in place. If tech data are not accessible, MAGWEL and/or NXP will
demonstrate the design 
ow using an in-house inductor. The result of the simulation should be
compared with a full lumped-element circuit simulation.
In general the advantage of having a transient design 
ow in place is to circumvent the problems
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Figure 23: Inductance of the inductor
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Figure 24: Alternative extraction of the inductor

arising from using frequency domain EM models (S-parameters) in transient circuits. Often
these S-parameter models turn out to have a lack of passivityand stability, resulting in transient
solutions not converging, arising from failing to capture dominant poles in the right frequency
plane. For this approach, as an example, the 8-shaped inductor can be used by comparing a
simple circuit with a simple lumped element inductor model in transient with the same circuit
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Figure 25: Q-factor of the inductor

Figure 26: Value of currents at the left and right contact of the inductor

coupled with the EM model.
In order to assess the results of the current build-up shown in Fig. 26, we represent the inductor
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Figure 27: Logarithms of the (absolute) values of the inductor currents at the left and right
contact.

as a simple lumped compact model (see Fig. 30), consisting ofL, R and C to ground. As a �rst
approximation we can take the values from the MAGWEL simulations, but in order to get a
good �t, we took R=2 . Using a step magnitude of 1.0 Volt, the result in Fig. 31 is obtained.
Applying a step magnitude of 0.1 Volt as was done for the �eld solver, we obtain the result of
Fig.32. The current build-up is shown to be in good agreementwith the currents in Fig. 26.
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Figure 28: Value of the current in the the ground plane contact. A transient overshoot is
observed

7 Circuit examples

7.1 Ring Modulator

The Ring Modulator from �gure 33 is a widely used benchmark circuit described in detail in
[3] and http://pitagora.dm.uniba.it/ ~testset/problems/ringmod.php respectively. The
circuit mixes a low-frequent input signal Uin 1 with a high-frequent input signal Uin 2 producing
a mixed signal in U2. Depending on the arti�cial parasitic capacitance CS we obtain a sti�
ordinary di�erential equation ( CS 6= 0) described by a system of 15 nonlinear equations or an
index-2 di�erential-algebraic equation (CS = 0) consisting of 11 di�erential and 4 algebraic
equations. The arti�cial capacitance comes at the price of high frequent parasitic oscillations
being introduced. For the modi�ed nodal analysis the diodesare replaced by nonlinear resistors
described by the voltage-current relation

I = g(U) = 
 (e�U � 1)
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Figure 29: Logarithm of the absolute values of the current inthe ground plane. Two time scales
are observed.

Figure 30: Set up of a compact model for the transient results.

and the various constants of the model are given by

C = 1 :6 � 10� 8 R = 25000

Cs = 2 � 10� 12 Rp = 50

Cp = 10 � 8 Rg1 = 36:3

L h = 4 :45 Rg2 = 17:3

L s1 = 0 :002 Rg3 = 17:3

L s2 = 5 � 10� 4 Ri = 50

L s3 = 5 � 10� 4 Rc = 600


 = 40:67286402� 10� 9 � = 17:7493332
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Figure 31: Results of a compact model for the transient simulation using 1V as step magnitude.

Figure 32: Results of a compact model for the transient simulation using a step magnitude of
0.1Volt.

see [3]. The input signals are given by

Uin 1 = 0 :5 sin(2000�t )

Uin 2 = 2 sin(20000�t )
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Figure 33: Circuit diagram for Ring Modulator taken from [3]

and the initial vales are chosen as zeros only. As the capacitors and inductors are linear, it is
straightforward to formulate the equations in the form

A
d
dt

x + b(x; t ) = 0

where A is a singular matrix in case ofCS = 0. Solving the Ring Modulator an t = [0 ; 1 � 10� 3]
with model constants as above using DAEn [1] with the set of options

abstol = 10 � 4 reltol = 10 � 4

estrat = 2

and we obtain the mixed signalU2, see �gure 34.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
t

� 0.8

� 0.6

� 0.4

� 0.2

0.0

0.2

0.4

0.6

0.8

u

output signal

Figure 34: mixed low and high frequency output signalU2 by the Ring Modulator
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7.2 Oscillator

At �rst we brie
y describe the models for MOSFETs implemente d in MECS modeled by equiv-
alent circuits. The MOSFETs in MECS are described by the following equations

j G � q0
GD (eG � eDi ) + q0

GS(eG � eSi ) = 0 ;

j S �
eS � eSi

Rs
= 0 ;

j D �
eD � eDi

Rd
= 0 ;

� q0
GD (eG � eDi ) + q0

DB (eDi � eB ) � iBS (eB � eDi )�
eD � eDi

Rd
+ iDS (eDi � eSi ; eG � eSi ; eB � eSi ) +

eDi � eSi

Rsd
= 0 ;

� q0
GS(eG � eSi ) + q0

SB (eSi � eB ) � iBS (eB � eSi )�
eS � eSi

Rs
� iDS (eDi � eSi ; eG � eSi ; eB � eSi ) �

eDi � eSi

Rsd
= 0 :

Here the unknown functions are j G ; j S ; j D (current through gate, source and drain contacts)
and eDi ; eSi (internal potentials). eG; eS ; eB and eD are the potentials at gate, source, bulk and
drain. Rs, Rd and Rsd are constants, see table 1. The functionsqGD ; qGS ; qDB and qSB are

Parameter name Value in ME-MOSFET Value in MD-MOSFET
Rsd 1015 1015

Rs 4 4
Rd 4 4
iS 10� 14 10� 14

UT 25:85 25:85
UT0 0:8 � 2:43
� 1:748� 10� 3 5:35 � 10� 4


 0 0:2
� 0:02 0:02

� 0 1:01 1:28
� B 0:87 0:87

Table 1: Sets of values for MOSFETs parameters

qSB (u) = qDB (u) = C0u; qGD (u) = qGS(u) = C1u;

where C0 and C1 are also given constants, see table 1. The functionsqSB and qDB can also be
given as nonlinear functions ofu as follows

qSB (u) = qDB (u) =

8
<

:

C0� B

�
1 �

q
1 � u

� B

�
; u > 0;

C0

�
1 + u

4� B

�
u; otherwise:

where � B is a constant. The function iBS (u) is as follows

iBS (u) =

(
0; u > 0;

iS
�
eu=UT � 1

�
; otherwise:

The values of iS and UT are also in table 1. The function iDS (uDS ; uGS ; uBS ) is equal to

iDS (uDS ; uGS ; uBS ) =

8
><

>:

�u DS (1 + �u DS ) (2(uGS � UT e(uBS )) � uDS ) ; uGS � UT e(uBS ) > u DS ;

� (1 + �u DS ) (uGS � UT e(uBS ))2 ; uGS � UT e(uBS ) > 0;

0; otherwise;
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if uDS > 0. In caseuDS = 0 is iDS (uDS ; uGS ; uBS ) = 0 and if uDS < 0 the function is as follows

Figure 35: uDS � j D characteristics for ME-MOSFETs

Figure 36: uDS � j D characteristics for MD-MOSFETs

iDS (uDS ; uGS ; uBS ) =

8
><

>:

�u DS (1 � �u DS ) (2(uGD � UT e(uBD )) + uDS ) ; uGD � UT e(uBD ) > � uDS ;

� � (1 � �u DS ) (uGD � UT e(uBD ))2 ; uGD � UT e(uBD ) > 0;

0; otherwise;

where uBD = uBS � uDS , uGD = uGS � uDS and UT e(u) = UT0 + 

� p

� 0 � u �
p

� 0
�
. The

values of �; �; U T0 , 
; � 0 can also be found in table 1. The MOSFET characteristics withthese
two sets of parameters are shown in the Figures 35 and 36. The blue current corresponds to
uGS = 1 :0. The current increases asuGS increases. All MOSFETs are ME-MOSFETs. The
�rst four MOSFETs have di�erent contacts connected to the same circuit node. The following
�gures illustrate the behavior of the VCO.

Figures 37-38 show the transient response of the oscillator. The Figure 38 is just a zoom of
Figure 37 around the tuning oscillation. The DAE solver DAEn was used to solve the resulting
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Figure 37: VCO transient response

Figure 38: VCO transient response, zoom to smaller time interval around the tuning oscillation

di�erential-algebraic equation with error strategy estrat = 2, absolute tolerance atol = 10 � 6

and relative tolerance rtol = 10 � 6.

The following is the net list of the oscillator simulated by MECS

* vco with level 2 mosfets
* five resistors
RmyR1 03 04 0.565e1
RmyR2 03 05 0.565e1
RmyR3 00 06 0.165e2
RmyR4 00 02 0.165e2
RmyR5 00 01 0.55e2

* six capacitors
CmyC1 02 08 0.46e-12
CmyC2 06 07 0.46e-12
CmyC3 07 08 0.3409e-12
CmyC4 01 03 0.1215e-11
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CmyC5 08 00 0.5e-13
CmyC6 07 00 0.5e-13

* four inductors
LmyL1 04 07 0.65e-8
LmyL2 05 08 0.65e-8
LmyL3 03 14 0.1e-8
LmyL4 09 10 0.1e-8

* three voltage sources
VmyV1 14 00 2.0
VmyV2 09 00 0.0
VmyV3 09 13 0.0

* one current source
ImyI1 00 11 6.0e-3

* six mosfets, modeled by equivalent circuits
Mmymosfet1 11 11 10 10 mosfet0dME l=1.0 w=1.0
Mmymosfet2 13 08 13 10 mosfet0dME l=1.0 w=1.0
Mmymosfet3 13 07 13 10 mosfet0dME l=1.0 w=1.0
Mmymosfet4 10 11 12 10 mosfet0dME l=1.0 w=1.0
Mmymosfet5 08 07 12 10 mosfet0dME l=1.0 w=1.0
Mmymosfet6 12 08 07 10 mosfet0dME l=1.0 w=1.0

* mosfet model
.model mosfet0dME nmos (level=2 rs=4.0 rd=4.0 phi=1.01 kp= 1.748e-3
+ vto=0.8 delta=0.02)

7.3 Coupled Circuit-Device Simulation

For the �rst fully coupled simulation with an direct, pointe r based, communication between the
MAGWEL solver for the electromagnetic �eld simulation and M ECS for the circuit equation we
consider a semi-closed loop of metal with two contacts, 144 metal nodes, 40 insulator nodes and
188 links as electromagnetic device, see �gure 6. The circuit contains just two elements namely
a simple sinusoidal source connected with the electromagnetic device model. The netlist reads

* Simple Circuit with one EM-Element, one voltage source and a resistor
V1 1 0 sin(0 1 1 0 0)
$EM1 1 0 simple_test.xml 1

where the $ implies a non-conform Spice3 element, seehttp://bwrc.eecs.berkeley.edu/
classes/icbook/spice/ . In more detail the line

$EM1 1 0 simple_test.xml 1

implies that the electromagnetic device is located betweennode 1 and 0, is modeled by the
MAGWEL xml structure simple_test.xml and the 1 say which contact is the reference contact
for the current calculation. Figure 39 show the current through the electromagnetic device.
DAEn was used to solve the resulting di�erential-algebraic equation with the standard options.
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Figure 39: Current through the semi-closed loop

In general the equations for the coupled circuit-device simulation reads

AC q0+ ARg(AT
R e; t) + AL j L + AM j M + AV j V + A I i s(t) = 0

q � q(AT
C e; t) = 0

� 0 � AT
L e = 0

� � � (j L ; t) = 0

AT
V e � vs(t) = 0

A00V + A10
d
dt

V + A 11� + A21
d
dt

� + B00hAT
M e+ B10hAT

M
d
dt

e = 0

� �
d
dt

A = 0

A02V + A03A + A12
d
dt

V + A13� + A23
d
dt

� + B01hAT
M e+ B11hAT

M
d
dt

e = 0

C00V + C10
d
dt

V + C11� + C21
d
dt

� + D0hAT
M e+ D1hAT

M
d
dt

e+ Lj M = 0

with solution x = ( e; �; j L ; q; jV ; V; A ; � ; j M ) and

A i =
�
A i 0 A i 1

A i 2 A i 3

�
; Ci =

�
Ci 0 Ci 1

�
; i 2 f 0; 1; 2g; B i =

�
B i 0

B i 1

�
; i 2 f 0; 1g:

the system can be formulated as a di�erential-algebraic equation of the form

A
d
dt

x + b(x; t ) = 0 :

The stand alone equations for the electromagnetic device can be formulated as

A0

�
V
A

�
+ A1

d
dt

�
V
A

�
+ A2

d2

dt2

�
V
A

�
+ B0U + B1

d
dt

U = 0

C0

�
V
A

�
+ C1

d
dt

�
V
A

�
+ C2

d2

dt2

�
V
A

�
+ D0U + D1

d
dt

U + Y = 0
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whereasU = hAT
M e is the applied voltage at the contacts whereh is the auxiliary functions and

Y = Lj M is the current through the electromagnetic device. The discretization of Maxwell's
equations in space may lead to an linear di�erential-algebraic equation.

8 Test of the linear MAGWEL-MECS interface

We need as input for MECS in the init step:

� Number of nodes

� Number of links

� Number of contacts

� Flag: semiconductor f True/Falseg

� In case of no semiconductor being present: The matricesA, B , C and D, more precisely:
A0; A1; A2; B0; B1; C0; C1; C2; D0; D1.

We need the number of links, nodes and contacts for the right shape of our matrices and to split
them, see below. All matrices are in the matrix-market coo-format, i.e. Remember as well that
we do the substitution of dA=dt = � in the linear case, i.e. we need 10 matrices.

9 Linear Coupling

Remember that in D3.2 equation (145), there is de�ned the matrix equation system:
�

A B
C D

�
�
�

X
U

�
+

�
0
Y

�
= 0 (2)

The A - matrix takes the following form

A = A 0 + A 1
d
dt

(3)

end similar expressions forB ; C; D . The linear interface is based on exchanging the matrices
A,B,C,D We designed the interface such that MEC needs as an input 10 matrices . This gives
MECS the control to substitute d

dt A = � and this work is already done. As this completely
speci�es the transient operation it makes sense to leave it to MECS. All that is needed is to
provide these 10 matricesA0; A1; A2; B0; B1; C0; C1; C2; D0; D1. We have examples running when
just reading in matrices (without interface). So the only th ing which needs to be done here is
to get MECS and MAGWEL communicate once to exchange the matrices by pointers.

10 Nonlinear Coupling

10.1 MNA

The Modi�ed Nodal Analysis leads to a DAE of the following typ e.

A
d
dt

d(x; t ) + b(x; t ) = 0

where A is a constant matrix and d and b are functions depending onx = ( e; jV ; j L ) and the
time t.
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10.2 EM System

The EM system can be split into two vector valued equations, one corresponding to the Maxwell
system (i.e. the discretized Gauss equation and the discretized Maxwell-Ampere equation) and
one to the discretized current equation. In the linear case this was the same with the matrices
A; B; C; D . In the nonlinear case we would write these two equations in the following way:

~A
d
dt

~d(x; t ) + ~b(x; t ) = 0 (4)

Â
d
dt

d̂(x; t ) + b̂(x; t ) = Y (5)

Here x = ( V; n; p; A; � ; Vapp) and Y is the current through the contacts. Observe here that we
moved away from the agreement that we write all equations in the form � � � = 0. Nevertheless
in this case it makes sense to write it like above because thenwe do not need to use the current
Y as input.

For the non-linear problem we will use the following naming rules :

� We will use the vector x being the content of all variables that determines the EM system,
i.e. x = ( V; p; n; A; � ; Vapp).

� The generate amatrix A = ~A will be the matrix in front of the operator d
dt acting on x.

� We will generate avector B that results from evaluating ~b(x) .

� We will generate a matrix C that is needed to evaluate the d
dt part of Y in eq. (5). This

is Â.

� We will generate a vector D that is needed to evaluate (remaining part of) Y in eq. (5)
This is b̂ .

At �rst sight this seems to be in con
ict with equation (126) o f D3.2 but the operator d2

dt2

acts only on A . Using the variable � = dA
dt

whenever appearing, we only have �rst-order time
derivatives. To make it clear and comparable to the linear case we see that

x =
�

X
U

�
(6)

because we identifyX = ( V ; n; p; A ; � ) and U = V app . Furthermore

~A =

2

4
A10 0 A21 B10

0 I 0 0
A12 0 A23 B11

3

5 (7)

Â =
�
C10 0 C21 D1

�
(8)

~b(x) =

2

4
A00 0 A11 B00

0 0 � I 0
A02 A03 A13 B01

3

5 x (9)

b̂(x) =
�
C00 0 C11 D0

�
x (10)

This connection is used as a basis for testing the non-linearinterface using a linear application.
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In order to get a better insight in the EM equations and how their transient versions are designed,
we will present here a detailed derivation. Let us start with the current-continuity equation in
metallic regions.

r � J +
@�
@t

= 0 (11)

In here,
� = r � D (12)

Furthermore,

E = �r V �
A
@t

� =
@A
@t

E = �r V � � (13)

For the nonlinear case MAGWEL has to do the substitution d
dt A = �. MECS cannot have the

control here. So we need as input here the �rst order terms represented by ~A, Â. (the ~A; Â are
constant, so can be put out of the derivative) and 0th order terms ~b;b̂. So we need here

� two matrices ~A; Â and

� two vectors evaluated at x = ( V; p; n; A; � ; Vapp): ~b(x); b̂(x).

The time dependency of ~d; d̂;~b;b̂ is not there so we can omitt.
For each link the discretized version ofE is

E ij = �
1

hij
(Vj � Vi + sij � ij hij ) (14)

In here, sij = � 1 is depending on the link orientation.

10.3 Current-continuity equation discretization in metal s

Let � ij be the conductance associated the the link< ij > . Then the discretized current-
continuity equation takes the following form :

X

j

dij

hij
"

@
@t

(Vj � Vi + sij � ij hij ) +
X

j

dij

hij
� ij (Vj � Vi + sij � ij hij ) = 0 (15)

It is programmed as :

X

j

dij

hij
"

@
@t

(Vi � Vj � sij � ij hij ) +
X

j

dij

hij
� ij (Vi � Vj � sij � ij hij ) = 0 (16)

From this equation we can read o� the content of the matrix ~A. Furthermore, the current -
continuity equation for metals has the property that the fun ction ~d is trivial.

Remember that we could construct the EM system in two ways: 1)we exploit the Gauss' law and
after a complete discretization , the gauge condition is a side-product; 2) we discretize Gauss'
law and the gauge condition is side product. Let us purchase the second option. For insulating
regions (interior nodes!) we obtain the discretized Gauss'law in the following form
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"
dij

hij
(Vi � Vj � sij � ij hij ) = 0 (17)

Note that there is no term containing a time di�erentiation. The corresponding content of the
~A matrix is zero. Physically, this equation is a constraint , as was extensively discussed in D3.2.

Next let us consider aninterior semiconductor node. First of all Gauss' law gets modi�ed by a
charge contribution.

"
dij

hij
(Vi � Vj � sij � ij hij ) � pi (�

p
i ; Vi ) � wi + n i (� n

i ; Vi ) � wi + ND � wi = 0 (18)

in which wi is nodal volume. All time dependence isimplicit . Therefore, this equation still is
a constraint. The hole and electron concentrations are given by

p = n0 exp (� p � V ) (19)

n = n0 exp (V � � n )

where n0 is the intrinsic concentration.
For the intrinsic semiconductor nodes we must also solve thecurrent-continuity equations

@
@t

p + r � Jp + qR = 0 (20)

@
@t

n � r � Jn + qR = 0

For the discretized hole currents we obtain using the Scharfetter-Gummel discretization scheme

J p
ij = � p

dij

hij
(pi B [X ij ] � pj B [� X ij ]) (21)

where
X ij = Vj � Vi + sij hij � ij (22)

and B (x) = x=(ex � 1) is the Bernoulli function. Note that the function R = R(p; n).
the equation for the electron current is :

J n
ij = � � n

dij

hij
(n i B [� X ij ] � n j B [X ij ]) (23)

The hole equation for nodei is

� wi
@
@t

pi +
X

j

� p
dij

hij
(pi B [X ij ] � pj B [� X ij ]) + R(pi ; n i )� wi = 0 (24)

In here, wi is the nodal volume. In a slightly modi�ed version it reads :

� wi n0
@
@t

e(� p
i � Vi ) +

X

j

� p
dij

hij
(pi B [X ij ] � pj B [� X ij ]) + R(pi ; n i )� wi = 0 (25)

Thus the function ~d is simply the exponential of the di�erence of the elementaryvariables � p � V .
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For the electrons we have :

� wi n0
@
@t

e(Vi � � n
i ) +

X

j

� n
dij

hij
(n i B [� X ij ] � n j B [X ij ]) + R(pi ; n i )� wi = 0 (26)

The function ~d = e (V � � n ) .
Besides the subtleties of the discretization that need to beconsidered at material interfaces,
above scheme gives a rather complete overview of the time evolution for the the variables
V; � p; � n .

However, so far we have not taken into account optimal scaling of the carrier equations. From
solving steady-state problems we learned that it is bene�cial to push the continuity equations in
numerical range that comes closer to "1" by scaling the equations by the nodal concentrations.
For the holes this becomes :

� wi
1

e(� p
i � Vi )

@
@t

e(� p
i � Vi ) +

X

j

� p
dij

hij

�
B [X ij ] �

pj

pi
B [� X ij ]

�
+

R(pi ; n i )
pi

� wi = 0 (27)

This brings us to the next 'node in the software-design decision tree'. Should we simplify the
�rst term as :

� wi
1

e(� p
i � Vi )

@
@t

e(� p
i � Vi ) = � wi

@
@t

(� p
i � Vi ) (28)

or keep it 'as-is' ?
Experience in transient simulations has learned that the discretization of @

@t(�
p
i � Vi ) induces loss

of charge conservation, therefore, we will apply the BDF rules on e(�
p
i � Vi ) . If we put everything

in the n; p notation we get here:

� wi
1
pi

@
@t

pi +
X

j

� p
dij

hij

�
B [X ij ] �

pj

pi
B [� X ij ]

�
+

R(pi ; n i )
pi

� wi = 0

We see here that the part in front of the time derivative is not constant anymore. This leads to
~A not being constant. The fact that we can write

1
pi

@
@t

pi or
@
@t

ln (pi )

is indeed an important question. Considering the non constant term in front of the time deriva-
tive leads to a di�erent formulation of the equations altogether (being a more general one.
For electrons we have

� wi
1

e(Vi � � n
i )

@
@t

e(Vi � � n
i ) +

X

j

� p
dij

hij

�
B [� X ij ] �

n j

n i
B [X ij ]

�
+

R(pi ; n i )
n i

� wi = 0 (29)

From the discussion above, it is clear that the communication between the MNA and the EM
solver, is e�ected by the scaling procedure. Fortunately, this is not a show stopper.
At each time instant we can extract from the EM solver the matr ices

~A = � wi � lm (30)

where � lk is the identity (unit) matrix. Since the state - space variables V; � p; � n are known at
any instant both in the EM solver and by pointers accessible by the DAEn solver, a conversion
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to p and n can be done 'on-the-
y'. The ME solver will assemble the remainder term ~b using
the state-space content and the geometrical situation.

Finally, we also consider the Maxwell-Ampere equation. Thestarting point is

r � H = Jc + Jd (31)

Using the A V substitutions it becomes :

"
@
@t

� + r �
�

1
�

r � A
�

= Jc � "
@
@t

(r V ) (32)

This should be completed with the gauge condition.

1
� 0

r (r � A ) + �" r
�

@
@t

V
�

= 0 (33)

In the discretization procedure, a multiplication with � 0 is done as well as a multiplication with
the length of the link. This gives

� 0L � Sij "
@
@t

� ij + L � Sij (1 � � ) � 0"
@
@t

r V
�
�
discrete

+ L � Sij r �
�

1
� r

r � A
� �

�
discrete � L � Sij r (r � A )

�
�
discrete

� L � Sij � 0J c
ij = 0 (34)

We can read o� straightforwardly the matrix ~A from the �rst two terms as well as the remainder,
~b.

So far, we have only considered equation (4). As far as the EM solver is concerned, the second
equation is 'post-processing'. However, if the EM module isencapsulated in a larger environ-
ment, and moreover, if the environment acts as a 'master' andthe ME solver is a 'client' for
providing the matrix computation, but no further solving is done, then it is needed that the
environment is capable of assigning values to the boundary conditions as well as assigning values
to all state-space variables. The role of the EM solver is to provide appropriate values for the
matrix and vectors in equation (5). Another way of looking at (5) is

Y = Â
d
dt

d̂(x; t ) + b̂(x; t ) (35)

This looks like a 'stupidity' but the meaning is now clear. Extract the current from the state-
space and applied voltages.

10.4 Coupled system

Now the coupling takes place by inserting into the MNA equation a relevant term for the EM-
Device(s):

A
d
dt

d(x; t ) + b(x; t ) +

0

@
AM j M

0
0

1

A = 0
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Furthermore we know that the applied potential depends on the node potentials:

Vapp = Vapp(e)

and we haveY = Y(j M ) being the vector of currents through the contacts.

Our goal later is to write all this together into one (vector- valued) nonlinear equation of the
form:

f (
d
dt

k(y; t); y; t) = 0

with k(y; t) being a nonlinear function and y = ( e; jL ; j V ; j M ; V; p; n; A; �). This can then be
solved with the DAE solvers.
Additionally setting that ~d(x) = d̂(x) = x for x = ( V; p; n; A; � ; Vapp(e) we can all put this
together into the variables (e; jL ; j V ; j M ; V; p; n; A; �) as follows:

2

4
A 0
0 ~A
0 Â

3

5

| {z }
=: A

d
dt

�
d(e; jL ; j V ; t)

(V; p; n; A; � ; Vapp(e))T

�

| {z }
=: D(y;t )

+

0

B
B
B
B
@

b(e; jL ; j V ; t) +

0

@
AM j M

0
0

1

A

~b(V; p; n; A; � ; Vapp(e))
b̂(V; p; n; A; � ; Vapp(e)) � Y (j M )

1

C
C
C
C
A

| {z }
=: B(y;t )

=

0

@
0
0
0

1

A

So de�ning k(y; t) := D(y; t) and with d
dt k(y; t) = w we write

f (w; y; t) := Aw + B(y; t)

10.5 Technical realization

Figure 40 gives a good overview of the whole coupling idea between the MECS solver and the
EM solver.

On the technical level one has to specify how the the two software packages interact (�gure 41).
Since the MECS solver is written in Python and the EM solver in C/C++ we use Cython as
a communication bridge, cf. http://cython.org/ . Cython is a programming language which
understands both C/C++ code and Python code and it is possible to exchange data types. The
data exchange is realized via pointers to vectors and matrices. The EM solver functionality is
available via a shared library.

In the following we will highlight the calling order of the no nlinear interface a little bit more.

� The �rst step is that MECS starts the EM solver via the functio n

char** magwel_nonlinear_init(char *model){
constructSolvEMAPI( model );

int nrLinks = getNrLinks();
int nrNodes = getNrNodes();
int nrSemiconductorNodes = getNrSemiconductorNodes();
int nrContacts = getNrContacts();
int sizeV = getSizeV();
int sizeP = getSizeP();
int sizeN = getSizeN();
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Figure 40: Coupling MECS solver with EM.

Figure 41: Technical coupling MECS solver with EM via Cython.

int sizeA = getSizeA();
int sizePi = getSizePi();
int sizeVappl = getSizeVappl();

...
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return init_array_pointers;
}

It constructs the API for the EM solver and as init informatio n returns the number of
nodes, links, etc. This information is needed to construct the matrices in the MECS solver
with the right dimensions.

� Running through the time integrator an update for a new input at a new time point is
needed. So the matrices~A, Â, ~b, b̂ need to be extracted from the EM part. This is done
with the function

char** magwel_nonlinear_update(char *model, double *inp ut_V,
double *input_p,double *input_n,
double *input_A,double *input_Pi,
double *input_Vapp){

...

loadStateVariables( input_array_pointers );

computeStateSpace();

constantPartEM_matrix = getConstantPartEM();

staticPartMaxwellEM_array = getDiscretizedStaticMaxwe llEM();
staticPartCurrentEM_array = getDiscretizedStaticCurre ntEM();

confirmResultsRead();

...

return output_array_pointers;
}

First the state variables (x) are loaded into the EM solver and then the full Maxwell system
is solved (computeStateSpace()). The output is then extracted in form of ~A, Â, ~b, b̂.

� The nonlinear interface also provides a stopping function which shuts down the EM solver
because it is not needed anymore. It takes care of memory deallocation in the EM solver
part.

void magwel_nonlinear_stop(){

deallocateStateMatrices();

destroySolvEMAPI();

return;
}

The linear interface works about the same. The main di�erence here is that we exchange only
matrices and that we need to call the update function only once.
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11 Testing the non-linear interface

11.1 Testing ~A

In order to check the result of the non-linear interface, we re-use again the elementary test case
consisting of a semi-closed metal ring. The structure generates 224 node degrees of freedom
(V) and 270 link degrees of freedom (A) in the frequency solver. With the frequency solver
, we did build a linear interface , which needed to be launchedonce and which is based on
the decomposition of the Newton-Raphson matrix in the frequency parameter. This allows to
identify the terms in the non-linear interface.
Let us start with the ~A matrix. In the example we obtain

test_tran: nrLinks: 602
test_tran: nrNodes: 240
test_tran: nrSemiconductorNodes: 0
test_tran: nrContacts: 3
test_tran: sizeV: 224
test_tran: sizeP: 0
test_tran: sizeN: 0
test_tran: sizeA: 270
test_tran: sizePi: 270
test_tran: sizeVappl: 3
test_tran: Loading state variables
test_tran: Computing state space
solvEM_API_MW::computeStateSpace(): state set to WAITIN G_FOR_RESULTS
solvEM_API_MW::computeStateSpace(): state of solver_co mmunicator: 3
test_tran: Printing Array Content
#################################
Number of elements in matrix Atilde: 2208
First set of elements:

1 1 6.686751e-15
1 2 -2.951393e-17
1 9 -1.660159e-17
1 41 -6.640635e-15
2 1 -2.951393e-17
2 2 1.337350e-14
2 3 -2.951393e-17
2 10 -3.320317e-17
2 42 -1.328127e-14
3 2 -2.951393e-17
3 3 1.337350e-14
3 4 -2.951393e-17
3 11 -3.320317e-17
3 43 -1.328127e-14
...
...

These numbers should be compared with the matrix content thematrix that is generated by
the ! and ! 2 terms of the matrix Taylor expansion.
The matrix VA-MTE-MMF-1-F1-MATRIX.mtx reads:
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%%MatrixMarket matrix coordinate real general
% number of non-zeros: 1418
% row col value
494 494 1418
1 1 6.686751e-15
1 2 -2.951393e-17
1 9 -1.660159e-17
1 41 -6.640635e-15
2 1 -2.951393e-17
2 2 1.337350e-14
2 3 -2.951393e-17
2 10 -3.320317e-17
2 42 -1.328127e-14
3 2 -2.951393e-17
3 3 1.337350e-14
3 4 -2.951393e-17
3 11 -3.320317e-17
3 43 -1.328127e-14
...
...

Comparing both series of numbers we �nd that the data does agree. However, we should
not be satis�ed with only checking the top. The �rst mismatch occurs at the node 10 (after
renumbering) for which the non-linear interface gives

10 2 -3.320317e-17
10 9 -5.902787e-17
10 10 2.674700e-14
10 11 -5.902787e-17
10 18 -3.320318e-17
10 50 -2.656254e-14
10 497 -2.656254e-19

This series should be compared to the content of VA-MTE-MMF-1-F1-MATRIX.mtx. The last
line represent a d� =dt contribution in the current continuity equation , i.e. it re present the
Jacobian element of

dij

hij
�

@
@t

(sij � ij hij ) (36)

We note that at position (10 , 227) the �gures do not match

10 2 -3.32031749999998e-17
10 9 -5.90278666666671e-17
10 10 2.67470020833333e-14
10 11 -5.90278666666671e-17
10 18 -3.32031750000007e-17
10 50 -2.656254e-14
10 227 -0.072

What does the number "-0.072" mean? It originates from the !� A term in the MTE of the
linear system expansion and as such is not related to an entryin ~A. This �gure should contribute
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to ~b, since it is seen as a term/ � and not / dA=dt term. Actually we are now considering d
dt �

which corresponds to the 2nd - order expansion in frequency. Therefore, in order to understand
this number we have to look into VA-MTE-MMF-1-F2-MATRIX.mt x. This matrix has the en-
tries :

%%MatrixMarket matrix coordinate real general
% number of non-zeros: 690
% row col value
494 494 690
10 227 -2.656254e-19
11 230 -2.656254e-19
12 233 -2.213545e-19
13 234 -2.213545e-19
14 239 -2.656254e-19
15 242 -2.656254e-19
18 246 -2.656254e-19
19 261 -2.656254e-19
22 265 -2.656254e-19
23 280 -2.656254e-19
26 284 -2.656254e-19
27 287 -2.656254e-19
28 290 -2.213545e-19
29 291 -2.213545e-19
30 296 -2.656254e-19
31 299 -2.656254e-19
42 225 -3.25391114999999e-20
43 228 -3.25391114999999e-20
44 231 -2.71159262500001e-20
...
...

As can be seen, the �rst line describes the coupling to � and agrees with the content of the
non-linear interface.

Note that in the ~A matrix the row index at 128 jumps to 225.

...
128 733 8.433606e-19
128 734 -6.906260e-20
128 740 -5.179695e-20
128 764 -1.035939e-18
225 225 1.000000e+00
226 226 1.000000e+00
227 227 1.000000e+00
228 228 1.000000e+00
229 229 1.000000e+00
230 230 1.000000e+00
231 231 1.000000e+00
232 232 1.000000e+00

41



233 233 1.000000e+00
234 234 1.000000e+00
235 235 1.000000e+00
236 236 1.000000e+00
237 237 1.000000e+00

...

This is because the nodes after 129 (after renumbering) onwards are insulator nodes , for which
the Gauss equation is solved and therefore no entry intildeA is expected. The line from 225
onwards contain only ones, sine this traces back to the equation dA=dt = �.
The section for the time derivatives of � are found from line 4 95 onwards (224+270+1).

...
492 492 1.000000e+00
493 493 1.000000e+00
494 494 1.000000e+00
495 42 -1.773766e-17
495 50 0.000000e+00
495 495 3.188366e-04
496 49 -2.365022e-17
496 50 0.000000e+00
496 496 3.188366e-04
...

The line (495,42) is the �rst vector potential entry. The mat rix element originates from a
contribution of the term

(1 � � )� 0� r
@V
@t

(37)

The diagonal element originates from the metallic current densities which have a term propor-
tional to �.
The number of rows in ~A is 764 = 224+270+270 as is seen when printing the tail of ~A.

...
763 127 0.000000e+00
763 214 5.647093e-16
763 763 5.075359e-04
764 128 0.000000e+00
764 215 5.647093e-16
764 764 5.075359e-04
Number of elements in matrix Ahat:
...

The �ngerprint of the matrix ~A is shown in �g. 42.
The MAGWEL solver does not produce (yet) information on the t ime derivatives of the applied
potentials but these are easily obtained elsewhere (MECS).For testing purposes it is irrelevant
information.

11.2 Testing Â

This list of entries describes all time derivatives of state-space variables that contribute to Y ,
the output vector, which consists of the currents at the three contacts.
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Figure 42: Fingerprint of the matrix ~A.

From equation (136) in D3.2 we �nd that the current at node i at some contact is composed of :

I out
i C

=
X

j

� Sij

hij
� (Vj � Vi C ) �

X

j

� Sij �� ij � i C j

+
X

j

� Sij

hij
�

�
dVj

dt
�

dVi C

dt

�
�

X

j

� Sij �� ij
� i C j

dt
(38)

We will test Â by counting the number of contributions to the the internal p rototype inductor
contacts. As is seen above we expect 63 degrees of freedom of which time derivatives contribute
to the contact currents. This is based on the following. The contact consists of 4 corner nodes.
For each corner node there are 4 other nodes which are not belonging to the contact itself. This
leads to 16 neighbors. However, 4 neighbours are actually belonging to the second contact and
therefore are represented by 1 degree of freedom. This gives3x4+1=13 contributions. However
there is also the contribution from the contact itself. Thus we expect 14 nodal contributions.
Furthermore, each node is connected to 4 links which are not inside the contact plane. This
leads to 4x4 link contributions. However, we can not ignore the 4 links in the contact plane
itself (they are not set identically equal to zero, since they are internal links). Thus we expect
20 contributions from the links. Thus contact 1 will lead to 14+20 =34 entries in Â.

Number of elements in matrix Ahat: 97
First set of elements:
1 52 8.632826e-14
1 60 8.632826e-14
1 90 3.748270e-16
1 94 3.748270e-16
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1 99 2.158206e-16
1 110 3.748270e-16
1 114 3.748270e-16
1 119 2.158206e-16
1 132 2.158206e-16
1 156 2.158206e-16
1 188 8.632826e-14
1 196 8.632826e-14
1 583 -8.632825e-20
1 584 -1.124481e-19
1 585 -1.726565e-18
1 588 6.906260e-20
1 602 0.000000e+00
1 603 -1.124481e-19
1 604 -1.726565e-18
1 607 6.906260e-20
1 621 8.632826e-20
1 665 -8.632826e-20
1 666 -1.124481e-19
1 667 0.000000e+00
1 670 6.906260e-20
1 684 0.000000e+00
1 685 -1.124481e-19
1 686 0.000000e+00
1 689 6.906260e-20
1 703 8.632826e-20
1 743 1.726565e-18
1 749 1.726565e-18
1 765 -3.504381e-13
1 766 2.762504e-15
2 53 8.632826e-14
2 61 8.632826e-14
2 91 3.748270e-16
2 95 3.748270e-16
2 100 2.158206e-16
2 111 3.748270e-16
2 115 3.748270e-16
2 120 2.158206e-16
2 133 2.158206e-16
2 157 2.158206e-16
2 189 8.632826e-14
2 197 8.632826e-14
2 586 -1.726565e-18
2 587 -8.632825e-20
2 588 -6.906260e-20
2 590 1.124481e-19
2 605 -1.726565e-18
2 606 0.000000e+00
2 607 -6.906260e-20
2 609 1.124481e-19
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2 625 8.632826e-20
2 668 0.000000e+00
2 669 -8.632826e-20
2 670 -6.906260e-20
2 672 1.124481e-19
2 687 0.000000e+00
2 688 0.000000e+00
2 689 -6.906260e-20
2 691 1.124481e-19
2 707 8.632826e-20
2 744 1.726565e-18
2 750 1.726565e-18
2 765 2.762504e-15
2 766 -3.504381e-13
3 11 3.320318e-17
3 12 2.766931e-17
3 13 2.766931e-17
...
...

We indeed �nd 34 couplings for the contact 1 as well as 34 couplings to contact 2. Since there
is no extra division between the contacts, there is a direct connection to the next contact which
is found at (1, 765) Thus the test has been successful in determining the correct number of
couplings.
The �ngerprint of the matrix Â is shown in �g. 43.

Figure 43: Fingerprint of the matrix Â.
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11.3 Scaling choices

Scaling is a major issue in the technical debugging process.In order to clarify the situation
here we present a short overview of scaling choices for a Di�erential-Algebraic Equation. We
distinguish between three types of scaling:

� Scaling of variables

� Scaling of time

� Scaling of equations

We start with the completely unscaled equation

A(xu(tu))
d

dtu
xu(tu) + b(xu(tu)) = 0

for the unscaled input xu at the unscaled time tu. Now introducing the variable scaling

Sxs = xu

where S is a diagonal matrix which is �xed for all times we get equivalently

A(Sxs(tu))
d

dtu
(Sxs(tu)) + b(Sxs(tu)) = 0 :

Now we put the time scaling into play via

ts = �t u

with the scaling factor � . De�ning

~xs(ts) := xs(�t s)

and using that

d
dtu

(xs(tu)) =
d~xs

dts

dts

dtu
= �

d~xs

dts

we get

�A (S~xs(ts))S
d

dts
(~xs(ts)) + b(S~xs(ts)) = 0 :

which is then the scaled equation. Notice that we did not use scaling of equations here which
is basically multiplying every row by a speci�c factor which is independent of time and the
variables. We assume here that this is already done when producing A and b.
It should be emphasized that the matrices F0 , F1, and F2 are dumped using the di�erent
scaling parameters. We may include a scaling factor di�erence here because the matrices should
re
ect the unscaled appearance

Unscaled RHS = [ unscaled (A0) + unscaled (freq) * unscaled (A1) + unscaled (freq) * un-
scaled (freq) * unscaled (A1) ] * unscaled (X)

That implies that A0, A1, A2 have di�erent scaling propertie s.
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12 Conclusion

Workpackage 3 of ICESTARS has focused on three main subjectsfor providing �eld solving
support for RF circuit simulation.

� First of all, complementary to frequency simulation which is based on small-signal anal-
ysis, a transient �eld solver was developed. Although transient �eld solvers are already
available in some from (CST, HFSS) , the underlying �eld solver exploits the potential
formulation which is a necessity when semiconducting materials are involved. The poten-
tial formulation requires speci�c care in order to arrive at a well-posed set of equations.
With the benchmarks that have been simulated, we have shown that the novelties that
were introduced have resulted into a problem formulation that is indeed solvable by stan-
dard numerical techniques. We have 'proved' the correctness of the problem set up by
demonstrating computational evidence. Of course, this is not a mathematically satisfac-
tory proof, but for the time being such a general proof is lacking and at least we can claim
that the proposed formulation makes sense.

� A second major theme of work in WP3 has been to set up a 'holistic' co-simulation. The
underlying idea is that circuits and �elds each provide their own set of di�erential algebraic
equations, and when correctly 'glued' together, i.e. giving a consistent and complete set
of cross couplings, the newly assembled system is solvable.

� Finally the third objective of the e�ort in WP3 was to support the tool development
by applications to industrial-relevant cases and to arrive at a set of test cases serving
as reference benchmarks. A series of cases have been presented both in D3.1 and the
underlying deliverable. The e�ort not only dealt with spati al discretization but also with
time integration in circuit simulations and adaptive time s tepping algorithms. The latter
techniques have also been applied to highly non-trivial cases as was shown in section 7.
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