A Mixed Time Frequency Algorithm for Circuit Simulations

Ashish Awasthi & H.G. Brachtendorf
Research Center
Upper Austria University of Applied Sciences, Hagenberg
Austria

October 2009
1 Introduction

2 Formulation of Algorithm
 - Selection of Initial Values

3 Test Examples
 - Non-Autonomous Circuits
 - Autonomous Circuits
Introduction

- At the high data rates requires huge signal bandwidths and high center frequency of several GHz led CAD tools to their limits.
- A novel method has been developed to circumvent Nyquist rate problem.
- The method is based on reformulating the ordinary DAE to a system of PDEs, also known as multirate PDEs (MPDEs).
- Formulation of PDE depends on the circuit class under investigation.
- The formulation of PDE also depends on number of fundamental tones or frequencies, therefore autonomous and non-autonomous circuits can be treated.
- Autonomous circuits comprise mainly oscillators, the frequency of oscillations is not known a-priori.
- The PDE formulation differs significantly from autonomous to non-autonomous case.
Consider the system of ordinary DAEs

\[
\frac{d}{dt} q(x)(t) = f(b(t), x(t)) \\
x_0 = x(t_0)
\]

where, \(x : \mathbb{R} \rightarrow \mathbb{R}^N \), \(b : \mathbb{R} \rightarrow \mathbb{R}^N \) and \(f : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}^N \)

Introduce \(\hat{x} : \mathbb{R}^m \rightarrow \mathbb{R}^N \) for the state variables and \(\hat{b} : \mathbb{R}^m \rightarrow \mathbb{R}^N \) of the input signals.

For simplicity, we consider the function \(f, b, \hat{b} \in C^0 \) and \(q, x, \hat{x} \in C^1 \). In 1996, Brachtendorf et al. (Numerical steady state analysis of circuits driven by multi-tone signals, published in Elect. Eng.) have introduced the corresponding multirate partial differential algebraic equation (MPDAE)
Formulation

\[
\left(\frac{\partial}{\partial \tau} + \frac{\partial(\tau \omega_1(\tau))}{\partial \tau} \frac{\partial}{\partial t_1} + \ldots + \frac{\partial(\tau \omega_{m-1}(\tau))}{\partial \tau} \frac{\partial}{\partial t_{m-1}} \right) q(\hat{x}) \\
= f(\hat{b}(\tau, t_1, \ldots, t_{m-1}), \hat{x}(\tau, t_1, \ldots, t_{m-1})).
\]
Formulation

\[\left(\frac{\partial}{\partial \tau} + \frac{\partial (\tau \omega_1(\tau))}{\partial \tau} \frac{\partial}{\partial t_1} + \ldots + \frac{\partial (\tau \omega_{m-1}(\tau))}{\partial \tau} \frac{\partial}{\partial t_{m-1}}\right) q(\hat{x}) = f(\hat{b}(\tau, t_1, \ldots, t_{m-1}), \hat{x}(\tau, t_1, \ldots, t_{m-1})).\]

Important Result

A given solution \(\hat{x}\) of the MPDAE (3) coincides with a solution \(x\) of DAE (1) along the curve i.e. characteristic curve

\[x(t) = \hat{x}(t, \omega_1 t, \ldots, \omega_{m-1} t).\] (3)

In Radio Frequency (RF) applications, many system comprises exactly two different time scales:

MPDAE

\[\left(\frac{\partial}{\partial \tau} + \frac{\partial (\omega(\tau)\tau)}{\partial \tau} \frac{\partial}{\partial t_1}\right) q(\hat{x}(\tau, t_1)) = f(\hat{b}(\tau, t_1), \hat{x}(\tau, t_1))\] (4)
A Mixed Time Frequency Algorithm for Circuit Simulations

Formulation of Algorithm

Selection of Initial Values

Cont...

\[\hat{x}(0, t_1) = h(t_1) \quad \forall t_1 \in \mathbb{R}, \]
(5)

\[\hat{x}(\tau, t_1) = \hat{x}(\tau, t_1 + T) \quad \forall \tau, t_1 \in \mathbb{R}, \]

\[\hat{x}(\tau, t_1) \approx \sum_{k=-K}^{K} X_k(\tau) \exp(i\omega(\tau)kt_1) \]
(6)

The Fourier coefficient \(X_k : \mathbb{R} \to \mathbb{C}^N \) with \(k = -K, \ldots, K \).
A Mixed Time Frequency Algorithm for Circuit Simulations

Formulation of Algorithm

Selection of Initial Values

Cont...

\[\hat{x}(0, t_1) = h(t_1) \quad \forall t_1 \in \mathbb{R}, \]
\[\hat{x}(\tau, t_1) = \hat{x}(\tau, t_1 + T) \quad \forall \tau, t_1 \in \mathbb{R}, \]

\[\hat{x}(\tau, t_1) \approx \sum_{k=-K}^{K} X_k(\tau) \exp(i\omega(\tau)k t_1) \]

The Fourier coefficient \(X_k : \mathbb{R} \to \mathbb{C}^N \) with \(k = -K, \ldots, K \).

Initial values estimation, Stephanie Knorr, Wavelet-Based Simulation of MPDAS in RF Applications

Ph.D. Dissertation, Univ. of Wup, 2007

Initial values estimation, Stephanie Knorr, Wavelet-Based Simulation of MPDAS in RF Applications

Ph.D. Dissertation, Univ. of Wup, 2007
Amplifier Circuit

Figure: (a) Solutions along characteristic curve, (b) Waveforms for output voltage
Differential Flip-Flop Circuit

Figure: (a) Solutions along characteristic curve, (b) Waveforms for output voltage
A Mixed Time Frequency Algorithm for Circuit Simulations

Test Examples

Non-Autonomous Circuits

Differential to Single Circuit

(a) Solutions along characteristic curve, (b) Waveforms for output voltage

Figure: (a) Solutions along characteristic curve, (b) Waveforms for output voltage
Colpitts Oscillators

Figure: (a) Angular Frequency variations, (b) Dominating Waveforms, (c) Solution along characteristic
Voltage Controlled Oscillators

Figure: (a) Angular Frequency variations, (b) Dominating Waveforms (c) Solution along characteristic curve
Pierce Quartz Crystal Oscillators

Figure: (a) Angular Frequency variations, (b) Dominating Waveforms (c) Solution along characteristic curve
Thank you