ICESTARS

Construction of an electromagnetic -**TCAD transient solver: Interface & boundary condition** subtleties

WP3 - Wim Schoenmaker/MAGWEL October 10, 2009

Overview

- Introduction
- Transient Electromagnetic-TCAD
- Interface conditions
- Boundary conditions
- Conclusions

Introduction

- Aim of the work:
 - Support to circuit model development of devices by applying first-principle evaluation of electromagnetic responses
 - Replacement of circuit models by full-wave characterizations
 - Allowance of these approaches directly in the time regime
- This requires two developments:
 - Construction of a transient field solver for semiconductors and large-signal electromagnetic fields
 - Construction of a circuit-field co-simulation framework

Transient Electromagnetic-TCAD

The transient electromagnetic-TCAD equations are:

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Maxwell equations

Conductors

$$\nabla \cdot \mathbf{J} = -j\omega\rho$$
$$\mathbf{J} = \sigma \mathbf{E}$$

Drift

(EM)

Semi-conductors

$$\nabla \cdot \mathbf{J}_{n} - q \ j\omega \ n = U(n, p)$$

$$\nabla \cdot \mathbf{J}_{p} + q \ j\omega \ p = -U(n, p)$$

$$\rho = q(p - n + N_{D} - N_{A})$$

$$\mathbf{J}_{n} = q\mu_{n} \mathbf{n} \mathbf{E} + kT\mu_{n} \nabla n$$

$$\mathbf{J}_{n} = q\mu_{p} \mathbf{p} \mathbf{E} - kT\mu_{p} \nabla p$$

$$\mathbf{J} = \mathbf{J}_{n} + \mathbf{J}_{p}$$
Diffusion

(TCAD)

Transient Electromagnetic-TCAD

- TCAD solves for
 - Voltages V, and carrier densities n, p or V, ϕ_p , ϕ_n but NOT **E**
- Set up the Maxwell equations in potential formulation V, A

Gauss
$$-\nabla \cdot (\varepsilon \nabla V + \frac{\partial \mathbf{A}}{\partial t}) = \rho(V, \mathbf{A})$$

Maxwell-Ampere
$$\rightarrow \nabla \times \nabla \times \mathbf{A} = \mu \mathbf{J}(V, \mathbf{A}) - \mu \varepsilon \frac{\partial}{\partial t} (\nabla V + \frac{\partial \mathbf{A}}{\partial t})$$

Gauge condition
$$\nabla \cdot \mathbf{A} + \frac{\xi}{c^2} \frac{\partial V}{\partial t} = 0$$
, $\xi = 1$ Lorentz $\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$ $\mathbf{D} = \varepsilon \mathbf{E}$ System

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

$$\mathbf{D} = \varepsilon \mathbf{E}$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{B} = \mu \mathbf{H}$$

System to be solved

October 9, 2009

TCAD experience

- Use Gauss' law to compute V
- In insulators Gauss' law is used to compute V
- Use the current-continuity equations to compute ϕ_p , ϕ_n
- Metals are usually 'ignored' (i.e. replaced by ideal boundary) conditions
- For skin effects, induced substrate currents this is not permissible.
- We must now treat metals using Ohm's law: this gives (again) an equation for V

Interfaces: metal/insulator

- What to do at metal/insulator interface points?
- Should we use Gauss' law or/and Ohm's law?
- At metal/insulator interface points, there is current present
- use Ohm's law to compute V
- Next, Gauss' law is used for computing the surface charge at these nodes.

Interfaces: metal/semiconductor

- The metal/semiconductor interface nodes also carry current
- use Ohm's law to compute V
- However, doping generates a build-in potential
- Fixed voltage jump, when passing through an M/S interface
- Consider a donut of a diode and metal

Interfaces: metal/semiconductor

$$V_{\text{semi}} = V_{\text{metal}} - \delta V$$

- For the carrier concentrations we assume infinitely large recombination velocities
- ightharpoonup p-n+N_D= 0 and pn= n_i^2
- ▶ This allows us to obtain δV from the doping
- Only one variable (V) is computed at M/S interfaces!

Triple points: metal/semiconductor/insulator

- Take half-sized jumps @ triple points (lines)
- The voltage plots can give 'counter-intuitive' results due to penetration of the build-in potential into insulators

Boundary conditions

- Internal boundary conditions
 - These are boundary conditions mimicking actual measurements set ups.
- External boundary conditions
 - These are the boundary conditions for the surface of the simulation domain
- Beware that there are four or six fields to be computed!

V , A_x , A_y , A_z and possibly ϕ_p , ϕ_n

Boundary conditions: Dirichlet

- Let us start simple: for a contact surface: V=V_{ext}
- ▶ This is a Dirichlet' boundary condition
- From TCAD, we borrow the idea that $E_n = E.n = 0$ for non-contact boundary points

▶ Pure TCAD:

$$\mathbf{E} = -\nabla V \Longrightarrow E_n = -\frac{\partial V}{\partial \mathbf{n}} = 0$$

EM TCAD:

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \Longrightarrow E_n = -\frac{\partial V}{\partial \mathbf{n}} - \frac{\partial}{\partial t} (\mathbf{A} \cdot \mathbf{n}) = 0$$

Boundary conditions: Dirichlet

- We can extend the Dirichlet boundary conditions by taking $\mathbf{A}.\mathbf{t} = 0$
- Since B=curl A we have that B is tangential to the surface

Boundary conditions: Dirichlet

- Do not forget the gauge condition!
- Simultaneous obeying Dirichlet's boundary conditions for A and the gauge condition requires that $A.n|_{in}$ and $A.n|_{out}$ and dV/dt are related
- The gauge condition is void for these boundary condition, since its evaluation requires the variable *A.n* from the outside which is not part of the set of degrees of freedom
- As a consequence, for links bouncing on the surface of the simulation domain, the gauge condition should not be inserted for lifting the singular character of $\nabla \times \nabla \times \mathbf{A}$

Boundary conditions: Neumann

- We can start from Neumann boundary conditions for A
- ▶ 90⁰ Mur boundary conditions for potentials is implemented

Boundary conditions: Neumann

▶ Missing '**B**' can be assigned to

$$\frac{\partial A_{//}}{\partial n}$$

ICT

Boundary conditions: Neumann

 $\frac{\partial A_{//}}{\partial n}$ can be assigned to radiation of TE wave

Boundary conditions overview

Default EM-TCAD	Radiative
V : Dirichlet at contact V : Neumann at non- contact	V : Dirichlet at contact V : Diriclet at non- contact (e.g. V=0)
A _{//} : Dirichlet	A _{//} : Neumann
A⊥: match of gauge condition	A _⊥ : match of gauge condition

Conclusions

- Interface conditions are non-trivial for EM+TCAD
- Boundary conditions require a careful analysis concerning
 - Desired character of the boundary condition
 - Discretization scheme
 - Respecting the gauge condition

