Waveletsin Circuit Simulation
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Abstract Wavelet theory is a relatively recent area of scientific aesle, with a
very successful application in a broad range of problemhk ssdmage, audio and
signal processing, numerical analysis, electromagnetittexing, data compression
and denoising, stohastics, mathematics and physicsngbititine, astronomy and
many more. The key wavelet property contributing to its ssdn such a variety
of disciplines is the capability of a simultaneous time aradjfiency representation
of a signal embedded within a multi-resolution analysis (MRramework. The
potential exploitation of this property for next-geneoati wavelet-based techniques
for analog circuit simulation is discussed in this paper.

1 Circuit simulation

Analog circuit simulation is a standard industry approaztverify an integrated
circuit (IC) design at the transistor level before commiytit to the expensive man-
ufacturing process. An Electronic Design Automation (EDAjte takes the cir-
cuit description originating from a designer’s draft or fightion data files, and
automatically generates a network description in form oéx file called netlist,
which describes circuit elements (resistors, capacitaagasistors, voltage and cur-
rent sources, etc.) and their connections. Then a ciramitilsitor (SPICE and its
derivatives), an integral part of an EDA suite, parses tm@mif and translates it to
a data format reflecting the underlying mathematical moéi¢he system. This is
done by applying the basic physical laws (energy and chamgsrvation) onto net-
work topology and taking the characteristic equationsterrietwork elements into
account. The most used “translation” approach is the clftugeriented modified
nodal analysis (MNA) [1], which yields a mathematical modethe form of an
initial-value problem of differential-algebraic equat®(DAES):
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dq(x)
dt

The matrixA is called an incidence matrix and, in general, is singulés.the vec-
tor of node potentials and specific branch curregts the vector of charges and
fluxes.f comprises static contributions, whitecontains the contributions of inde-
pendent sources. A numerical solution to (1) is found udiegNewton’s method in
combination with implicit time integration schemes andrspanatrix techniques.

Instead of describing the system with a minimal set of unkmowhe mathemat-
ical modeling of an electric network via the charge/flux otesl MNA approach
aims to preserve the topological structure of the networkthilis enabling a phys-
ical interpretation of simulation results by a user. Netis approach preserves in-
formation on charge/flux conservation, a crucial propeftynany analog circuits
like charge pumps, switched capacitor filters, etc. Funtioee, the charge/flux for-
mulation enables more realistic modeling of nonlinear cépes and inductivities.
In addition, (1) is suitable for the usage of special intemgrachemes such as multi-
step methods (BDF-Gear, Trapezodial rule) and it does mptire second partial
derivatives of charges resp. fluxes, which are usually nailable in standard cir-
cuit simulation packages and may not even exist due to thkedhsmoothness in
modern transistor models. On the other hand, in generak(&)stiff system, i. e.
it involves characteristic time constants that differ byesal orders of magnitude,
which is a serious hindrance to obtaining accurate resuliseéasonable amount of
CPU time. In addition, this representation suffers fromnmaoothness properties
of modern transistor models [2], which are struggling toctiee complex physical
processes with the smallest possible set of mathematiocatieqs. Furthermore, if
more general models for network elements are utilized onedfimodels are used
to include second order and parasitic effects, an ill-ciooried problem may arise
and very special care must be taken to avoid divergence \ihdang a numerical
solution to (1).

Today modern industrial analog circuit simulators arerfgdwo serious chal-
lenges: qualitative and quantitative [1, 3,4]. Tielitative challengés highlighted
when simulating circuits containing mixed analog-digjtalts. At present there is
no standardized framework within which is possible to smtikefficiently a mixed
analog-digital circuit. Analog circuits to be simulate@ aften multitone oscillatory
circuits, with widely separated carrier and modulatiorerA high-frequency car-
rier forces a small timestep while a low-frequency modolaforces a long simula-
tion interval, resulting in unacceptable long simulationds even for moderately-
sized RF circuits. Under the assumptions that the circuiiber is periodic or at
most quasi-periodic and that its frequency spectrum cositanly a small number
of frequencies, the multitone oscillatory circuits may lffeceently simulated using
a specialized RF simulator based on either the frequenoyadoHarmonic Bal-
ance or the time-domain Shooting algorithm [5]. Howeverjgital subpart in the
circuit introduces a substantial amount of high-frequesmynponents and the effi-
ciency of these specialized solvers diminishes, if theylmaapplied at all. Hence
the current approach to an IC design is to simulate the arRfdront-end in a
specialized RF simulator, while the rest of the circuit isidaed employing stan-
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dard circuit simulation techniques. Due to this separadioring the design process,
subparts of mixed analog-digital circuits are usually reglized on the same die
in order to keep spurious couplings between them as smalbsshge, since they
cannot be easily characterized in a common simulation @nwient. However, with

the trend towards ever-decreasing chip size, integrafiamalog and digital circuit

parts on the same die is eminent and new simulation toolscHratsupport these
mixed designs are urgently needed.

The quantitative challengédes in the simulation of extremely large circuits fea-
turing several millions transistors, e.g. memory chipse Bheer size of the un-
derlying MNA representation of such large circuits yields@ations that can last
weeks, even longer than a month. Or they simply cannot bepeeid due to ex-
treme memory and computational requirements. To cope higtsttuation, design-
ers are forced to aggressively simplify these very largeudis and simulate only
the most critical parts, an approach which is error proneh@y use so called fast-
SPICE simulators, which utilize speed-up techniques sadhlae look-up models,
circuit partitioning, event-driven algorithms, hieraiwdl and parallel computations,
etc. In this manner a fast-SPICE simulator is able to achéespeed up of factor
1000 in comparison to a standard circuit simulator but atptiee of reduced ac-
curacy (usually as high as 3-5%), a mismatch that sometieaets [to sub-optimal
designs and failure of produced ICs, thus necessitatingrestpe re-design cycles.

2 Introduction to wavelets

Wavelet theory emerged during the ™@entury from the study of Calderon-
Zygmund operators in mathematics, the study of the theoigubband coding in
engineering and the study of renormalisation group thaophiysics. The common
foundation for the wavelet theory was laid down at the enchef80’s and begin-
ning of the 90’s by work of Daubechies [6,7], Morlet and Groas [8], Donoho [9],
Coifman [10], Meyer [11], Mallat [12] and others. Today whtebased algorithms
are already in productive use in a broad range of applicafibh—18], such as im-
age and signal compression (JPEG2000 standard, FBI fingerdatabase), speech
recognition), numerical analysis (solving operator eiqurest, boundary value prob-
lems), stohastics, smoothing/denoising data, physicdegutar dynamics, geo-
physics, turbulence), medicine (heart-rate and ECG aisaliBNA analysis) to
name just a few. Recent approaches [19-23] to the problenutifrate envelope
simulation indicate that wavelets could also be used toesddihe qualitative chal-
lenge by a development of novel wavelet-based circuit st techniques capa-
ble of an efficient simulation of a mixed analog-digital ciitc

A wavelet is a waveform of finite duration, with zero averagéue. Its shape is
usually irregular and asymmetric, unlike sines and cosimé®urier series repre-
sentation. Nevertheless, just like sines and cosines icléissical Fourier expansion,
wavelets may be used as basis functions for a wavelet expatsrepresent elec-
trical signals. The wavelet basis is formed via translatiand dilations of a single
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wavelet functiony(x), calledmother waveletaccording to

Yse () =s 2y (X_ST> ; )

where(s, T) € RT x R. All wavelets from a specific basis are shifted (parame}er
and dilated/compressed (by facprersions of this mother wavelet. The translation
parameter is responsible for the localization in time of a correspogdivavelet.
The scaling or resolution parametgrusually called the scale, is generally under-
stood as the frequency inverse. Therefore, the high scasel(ition) corresponds
to low frequencies or a global view of the signal and low s¢edsolution) corre-
sponds to high frequencies or a detailed view of the sigria. fictors /2 is used
for energy normalization across different scales. Fronit(®)clear that a wavelet
basis intrinsically supports simultaneougime-frequency representation of a sig-
nal, where the translation parametas responsible for the time localization and the
scaling parametesfor localization in the frequency domain. One particulavelat
property should be noted at this point: with wavelets it i$ passible to exactly
know a single frequency that exists at a single time instaraiber it is possible
only to know whatfrequency bandsxist at whatime intervalg24].

There are numerous types of wavelets, each with differetst sk features.
Wavelets are usually grouped in wavelet families, accardinseveral properties
such as the support of wavelet and scaling functions, thebeuf vanishing mo-
ments, the symmetry, the regularity, existence of a scdlingtion ¢, the orthogo-
nality and biorthogonality, existence of explicit expriessand others [13]. Some of
the most famous wavelets families include: Haar, Daubs¢kigine, biorthogonal,
Morlet, Mexican hat, symlet, coiflet, Meyer, Bessel, Cay¢bgussian, etc.

Transforms involving wavelets can roughly be divided irticet classes: con-
tinuous (CWT), discretised (DWT) and multi-resolution ba@edRA). Contrary to
the name, DWT is a continuous-time transform, as is CWT. Therelisness here
refers to the fact that discrete wavelets are not continya@aslable and translatable
functions but can only be scaled and translated in discteps sletermined by some
integers {, k). For example, aiscretewavelet suggested by Daubechies [7] is

Wik(x) =2712g27Ix—k). (3)

DWT in combination with MRA is a very efficient transform wittsilinear compu-
tational complexityZ'(N), it is even more efficient than the Fast Fourier Transform
(FFT) with its #(NlogN) complexity. Against the background of the circuit simu-
lation, MRA is of particular interest and it will be furthexgored in more details.

2.1 Multi-resolution analysis

Formally defined, anulti-resolution analysis (MRAN L?(R) is a set of closed sub-
spaced/s with s € Z such that the following five properties are satisfied [25]



Wavelets in Circuit Simulation 5

1...V.1CcVocViC...CL%(R), thatisVs C Vs,1 forall se Z

2. UL® Vs is dense inL2(R); and in additiom¢> ., Vs = {0}

3. f(t) e Vsiff f(2t) € V1

4. if f(t) € Vo, thenf(t—k) e Vpforallke Z

5. 3 scaling functionp(t) € Vo, so that se{g(t — k) | k € Z} is a Riesz basis 0fy

The first (structural) property states that subsp&s@s MRA are nested and the
information at the resolution levslis entirely included in the information at higher
resolution levels+ 1. The second (resolution) property states that\fhes € Z,
coverL?(R), i. e. the approximation approaches any signal in the einiitial space
L?(R) as more details are added, i. e. resolution goes to infinityth® other hand,
as more and more details are removed, i. e. resolution gersem only constant
functions are left. In a limit, only the zero function remsiirsince the functions
are squarely integrable. The third (dilation) propertytesahat allVs are scaled
(dilated) versions of the central spadg The fourth (translation) property states
that translation off (t) for somek does not change its resolution, iMg.is integral
translation-invariant. From the properties 3 and 4 it dlyefollows that if a function
f isinVp, then its scaled and translated versig@'t — k) is inVj, i. e. if f(t) € Vo,
then f(2/t — k) € V; for all k € Z. Finally, the fifth property states that similarly to
the functione!®* in Fourier analysis, there exists one functigft) which generates
the basis functions for alls. More precisely, if we defingsy = 25/2(p(25t —k), then
{®k(t) }kez forms a Riesz basis &k.

To obtain the required resolution in a representation ofrhitrary signal, a se-
guence of scaling function expansions with wavelets of sssiwely higher resolu-
tions are used within the MRA. Interestingly, ordpescaling functionp(t), called
father wavelet, andnewavelet functiony(t), called mother wavelet, are needed to
construct complete basis sets for systems of function space

2.2 The wavelet expansion

Let us now consider a wavelet expansion embedded in the MBédwork. We
start by considering an electrical signal as a combinatfca gmooth background
and fluctuations superimposed on it, as is done for eletfiiela representation
[26]. At a given resolution leves the signal is approximated M; by ignoring all

the fluctuations above this level \fy with k > s. Let f(t) € Vs denote the approx-
imation of a signalf (t) at given levels. In order to get better approximation, the
level is increased te+ 1 and a new approximation is obtained by adding the de-
tails, denoted ads(t) to the approximation on previous level, i. e.

fsr1(t) = fs(t) +ds(t). 4)

Equation (4) means that at the resolution lesel 1 a signal f(t) is approxi-
mated withfs(t) in the scale subspadg andds(t) in the detail subspadék. The
scale subspac¥; consists of functions that contain the signal informatiawd
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to scale 23. The members of the detail subspable= V5.1 & Vs are differences
ds(t) = fsy1(t) — fs(t) and it comprises the additional information regarding itketa
on scales betweernr2 and 2 ($t1). For best approximation in terms ¥ the dif-
ferenceds(t) = fsy1(t) — fs(t) should be orthogonal tés(t). This is convenient to
assume but not necessary. Assuming orthogonality meand4haVs and

i=S
Vi1 =We B Vs =WebWs 1BVs 1=... = EDWs—i ®Vs_s (5)
=

Furthermore, any two detail spaces at different resolstame orthogonal, and the
detail spacé/\; is orthogonal to an approximation spaég only whens > ¢, i. e.
when the detail space is at a higher resolution level.

If the improvement of approximation (4) was continued toriit§i, the original
signal f (t) would be recovered as:

f(t) = fs() + 3 dj(0). (6)

Hence an arbitrary electrical signal expanded as a summettiecaling and wavelet
basis functions may be denoted in a hierarchical manner as:

s foo oo
f)="> cal®)+3 kz dj kWi k(). (7)
|=—0c0 ]=SK=—0

The first term in (7) is the projection df(t) into the scaling subspad&. It corre-
sponds to a coarse approximationfdf) at a previously selected resolution legel
The second term consists of projectionsf @) into the wavelet subspacéé.

In practical computations only finite sums can be used andeéhéme sums in
(7) must be truncated. In general, we are interested in thaver of the circuit
over a certain finite time interval of length This implies that the upper limit of a
sum in the first term (inde® and the inner sum of the second term (inégxould
naturally depend on the interval considered, i. e. the patarh. The outer sum of
the second term (inde) defines the number of levels of detail that are to be taken
into account, and hence the resolution level of the appration will be defined by
the upper boundary of this sum. For example, a finite appration of an electrical
signal over the time intervad, L] on aJt" resolution level could be denoted as:

2SL-1 (3-1) (2iL-1)

f(t) ~ Z) calt)+ > kZO dj kWi k() (8)

=

At each resolution levejlthere are L basis functions, thus there are in tatad—S)L
wavelet coefficients to be computed. In addition, there atec@efficients corre-
sponding to scaling functions at a resolution leseHence the total number of
coefficients in a finite wavelet expansion (8) over the iraef®,L] on aJt" resolu-
tion level sums up to2.. Forefficientcomputations the resolution lev@should be
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chosen so that the coarse level is satisfied for most valuearaf more details, i. e.
wavelets, are added only at the points where they are needspture the abrupt
signal fluctuations.

3 Waveletsin circuit simulation

Recent investigations into the use of wavelets in simufatibelectronic circuits
[19-23] have shown that these intrinsic properties makeeledsy a natural can-
didate for a successful successor of time-domain (e. gsigahanalysis, shoot-
ing analysis) and/or frequency domain (e. g. Harmonic Badanalysis) paradigms
used in circuit simulation today. For example, Zhou and Cappse the use of the
wavelet collocation method in the time-domain [19] and ttegjfiency domain [27]
circuit simulation of mostly-linear circuits. For the comtption of periodic steady
state Soveiko and Nakhla [20,28] advocate a wavelet teakriigcombination with
the Harmonic Balance approach, while Li et al. [29] use weivbhlance method.
Christoffersen and Steer [21] used wavelets for transiectit simulation within a
state-variable based approach. Dautbegovic and Conddmu$22multitime partial
differential equations (MPDE) in combination with wavelédr efficient simulation
of multirate nonlinear RF circuits. Although valuable asrags-of-concept, unfor-
tunately these algorithms are still not mature enough tosleel in industrial design
flows.

We propose a wavelet expansion (8) embedded in the MRA frameas an ap-
proach to take when developing wavelet-based circuit sitiari techniques. Con-
sider the electrical signal depicted in Fig. 1, which is adgptime-domain output
signal of a ring oscillator featuring a large amount of digdontent. It can be con-
sidered as a “sum” of a digital signal and some irregular @apductuations. To
describe such a signal efficiently, some sort of an adapfipecximation is needed.
In such approximation an expansion of an electrical signéhose intervals where
the signal varies smoothly and slowly should be simple arid s little degrees of
freedom as possible, but whose resolution could be easitgased in places where
the signal changes quickly and abruptly. For example, treosinpart could be rep-
resented by the low-resolution expansion of the signalkurayy theaveragesignal
behavior. A quickly changing part dietailscan only be captured by high-resolution
components.

The wavelet expansion (8) is exactly the kind of the adatjygroximation that
we are looking for. Embedded in the MRA framework, scalingdtions can be used
for an expansion of an electrical signal at a lower resotugwel in those intervals
where the signal varies smoothly and slowly, but in placesretsignal changes
are quick and abrupt more details (i. e. wavelets) shoulddoec Therefore, the
approximation effort is considerably reduced since ong/“thoublesome” regions
are treated on a high-resolution level (i.e. with a largembhar of coefficients),
while smooth regions described on lower levels are captbyed smaller set of
(possibly only) scaling coefficients. Compared to time-dontransient analysis,
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Fig. 1 An output voltage of a 1 GHz ring oscillator

taking fewer coefficients for the wavelet expansion in srhaegions is analogous
to taking fewer time-steps during the transient analysistervals in which no large
changes in signals are detected.

3.1 Advantages of the wavel et-based approach in circuit smulation

Let us now explore particularly advantageous propertigh®fwavelet expansion
against the target application of circuit simulation.

Time-frequency representation. The truncated wavelet expansion (8) may be
written in general form ag(t) = 5,c.,a(f) ¥, where{ comprises all scaling
and wavelet basis functions aadare the corresponding expansion coefficients on
a finite index set¥ < (j,k). In fact, these basis functions are generated by scal-
ing (determined by the value ¢j and translating (determined by the valuepfi
single functiony, i.e. Yjx = 21/2 @(2)t — k). Such an expansion associates with a
function f, the array of coefficienta = {a,(f)}ic.» as is the case for the classical
expansions. However, the coefficieafsconvey very detailed information oihdue

to the structure of# [30]. Each.# comprises two-fold information on time (spa-
tial) location encoded bl and information on scale, determined pyFurthermore

a scale is closely related to a frequency band and can behhotigs its inverse.
Therefore each coefficient in a wavelet expansion (8) carries simeltaisly both
the time-domain and the frequency-domain information.

Adaptiveresolution. In contrast to approximating the functidrof a given opera-
tor equation on some mesh (of fixed highest resolution), ieabased schemes aim
to determine its representation with respect to a basis Bl means that during



Wavelets in Circuit Simulation 9

the solution process, wavelet based algorithms will tradly those coefficients in
the unknown array that are the most significant for approximatifgvith as few
as possible degrees of freedom. This property contribut@seinsely towards the
efficiency of such algorithms.

In addition, an adaptive resolution equips a wavelet expangith a natural way
for an easy trade-off between required accuracy and reboginulation time. If
the amplitude of a fast-changing fluctuation is below thesedloor or the design
process is in its early stages, when a designer is interestlgdn an average be-
havior of a designed IC, fluctuations above certain pre-ddftut-off level can be
neglected. While a-priori definition of this cut-off levelrcae tricky with standard
approaches, with wavelets it is a trivial task of settingrguired resolution level
S.

Furthermore, if the approximation is not satisfactory, \@a continue with pro-
gressively increasing the resolution level, thus addingrfiresolution details to the
signal. Theoretically, by continuing this process to irtfimesolution level, the sig-
nal will be exactly recovered just like for example in cas&aflor series expansion
in the time domain or Fourier expansion in the frequency doma

Mixed analog-digital simulation. As briefly discussed in Section 1, at present
there is no simulation framework (neither in the time norhia frequency domain)
in which a mixed analog-digital circuit can be efficientlynsilated. The reason for
this is a considerable approximation effort needed to cassignal corresponding
to one circuit part type when simulated in a simulator sué@dbr the other circuit
type. For example, when a digital signal is to be simulated frequency-domain
analog simulator, well suited for the analog RF front-emddations, an extremely
large number of Fourier coefficients is needed to accuratebgribe falling/rising
edges of a digital signal. This is due to the poor time-donhaialization property
of the frequency-domain Fourier representation. In cahtranly a small number
of coefficients corresponding to appropriately chosenisgdlinctions should be
needed to approximate the signal well everywhere excetdrt tervals of sharp
transitions. For those and only for those short intervaldjtaonal coefficients cor-
responding to wavelet functions at higher resolution leale needed to obtain
equivalent or better accuracy to the Fourier represemtaktiot at significantly re-
duced computation cost.

Validity range. A Taylor expansion places strong demands on the regulafity o
such as analyticity, while wavelet expansion is typicalllid for a much larger class
of functions such as squarely integrable ones. This meantsttis only required
that the series on the right-hand side of (7) converges ircdineesponding norm.
Consequently the space of functions describing an elatgignal only needs to be
a space of squarly integrable functions. Hence, a wavefsresion has a potential
to reduce negative influence of poor smoothness of tramsisddels on numerical
convergence. However, this can only be confirmed after sktertesting on the
existing industry models is performed within a working mtygpe of a wavelet-
method.
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3.2 Challenges of wavelet-based algorithms

The foreseen advantages of the use of wavelet-based teesrigcircuit simulation
highlighted in Section 3.1 give us a solid justification fovésting efforts for devel-
oping wavelet-based algorithms. However before an ingusgite exploitation of
these techniques is possible, the following issues need taldressed.

Size of the wavelet expansion. For a numerically effective wavelet method it is
crucial to setup near-optimal wavelet expansions, so thgt @ small number of
wavelet coefficients is needed for a signal representatiotike with the Fourier
basis, in which the shape of a basis function is predefineccandot be changed,
wavelet basis functions can have many shapes, varying froooth to highly ir-
regular. A wavelet algorithm can be setup without havingiarpknowledge on the
type of the wavelet basis set to be used for signal represamtdn fact, if a user
has some previous insights about the expected resultsndipan experience or
on some prior simulation results, then a suitable wavelaihsg be chosen prior to
simulation start, as one of simulation parameters. For pkar smooth wavelet set
could be chosen for ICs involving smoother functions andemoegular ones for
digital-like signals. Matching a wavelet basis set to aaighape to reduce the num-
ber of needed expansion coefficients is analogous to chpdstnappropriate base
frequency in the Fourier expansion to describe periodieagwith a minimum set
of coefficients corresponding to the expected maximum hareio a signal’s spec-
trum prior to the HB computations. In addition, an adaptigkstion of expansion
time points as well as both hard- and soft-thresholdingrtegles [31-34] can help
to further decrease the size of a system to be solved.

Numerical considerations. Even with a near-optimal selection of the wavelet ba-
sis the total number of wavelet coefficients is still verygkgrit equals the number of
circuit variables times the number of coefficients in thesgrowavelet expansion
for each node. For an efficient wavelet method a criticalassthow to store and
invert a huge but relatively sparse Jacobian matrix arifiogn a Newton method
applied to solve this nonlinear system. The investigatamesongoing into a setup of
wavelet Jacobian in a block-diagonal form, which does ngtire storing the com-
plete Jacobian at any point and is also easy to invert. Fumibve, one needs to be
aware that significant matrix conditioning problems casedue to a poor smooth-
ness of MOSFET models (modeling problem) as well as solviglyér-index DAEs
(topological problem) and take appropriate care to minaiieir negative influence
on a solution process.

Applicability and functional considerations. The Harmonic Balance algorithm is
an efficient tool for analyzingeriodic or at most quasi-periodic circuits, unfortu-
nately its use on any other type of circuits is a priori exeldidNo such limitation
is envisaged with wavelet based techniques and they arersaiin the sense that
they may be applied to any type of circuits. However, it isiobg that for pure si-
nusoidal signals there cannot exist a wavelet basis tha&tisrtthan a Fourier basis
in which a single expansion coefficient is needed to comiglelescribe the signal.
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But since the periodicity is not excluded from wavelet exgians, a wavelet basis
can be found, such that it minimizes this expansion inefiicyeand takes a small
penalty when simulating pure sinusoidal circuits for thieesaf generality.

Next, assuming that the previously mentioned challengessaccessfully re-
solved and a wavelet solution is obtained, the questioneiriterpretation of these
qualitatively new results arises. Wavelets are a powerfalyais tool but what can
we conclude from a just performed wavelet analysis to ermbiere robust design?
An important point to enable faster adoption of wavelet Hasehniques in wider
design community, governed by time- and frequency-dompéti§ications, is the
derivation of a hopefully simple connection of wavelet-domresults to time- and
frequency-domain design specifications.

4 Conclusion

With an ever-shrinking size and ever-increasing demanduantional complexity
of a modern IC chip, a fast and scalable circuit simulatioa key design and veri-
fication approach in semiconductor industry. But incregslifficulties that current
industrial circuit simulators are facing today, in partanun a simulation of mixed
analog-digital circuit as well as circuits featuring nultis of active devices, have
highlighted the need for a novel approach to circuit sinaoiat

Intrinsic properties make wavelets a natural candidatexfsuccessful succes-
sor of time- and frequency-domain paradigms used in cigimitilation today. This
paper has discussed the advantages of wavelet expansioioh, ean be well uti-
lized in circuit simulation, but also pointed out the chafies that must be resolved
before an industry-wide acceptance and utilization of WeaMeased methods oc-
curs. However, the expected benefits of a wavelet-basedatinruengine, both in
quantitative terms (efficient simulation of mixed-signatuits) as well as quali-
tative terms (analyzing electrical signals with resolni@dapted to a problem at
hands), is well worth allocating effort in a bid to develop thext-generation circuit
simulators capable of answering industrial challengesmwiatrrow.
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