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Abstract For a fast simulation of interconnect structures we consider precondi-
tioned iterative solution methods for large complex valuedlinear systems. In many
applications the discretized equations result in ill-conditioned matrices, and effi-
cient preconditioners are indispensable to solve the linear systems accurately. We
apply the dual threshold incomplete LU (ILUT) factorization as preconditioners for
the BICGSTAB iterative solver. On complicated problems with a different range
of frequencies we show that the BICGSTAB method with the ILUTpreconditioner
provides a very accurate solution of the linear systems.

1 Introduction

With the increasing complexity of on-chip interconnect structures more robust and
fast simulation methods are necessary to understand the behavior of electromagnetic
fields in such complex structures. For a better understanding of the performance of
these structures field simulation approaches provide more insight about the behavior
of the electromagnetic fields.

The governing equations of the electromagnetic fields are given by the Maxwell
equations. For many applications the potential formulation of the Maxwell equa-
tions is used which has several advantages. In particular, for interconnect structures
the potential formulation allows separate modeling of fields in dielectric, semicon-
ductor and metallic regions, which reduces the computational time essentially [1,2].
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The differential operators are discretized using the usualfinite-volume methods for
the electric potential and the charge density. However, forthe magnetic vector po-
tential the finite-volume method is replaced by a ’finite-surface method’ [3], whose
origin is found in Stokes’ theorem in contrary to the finite-volume methods that are
rooted in Gauss’ theorem [1]. This discretization method preserves important phys-
ical characteristics of the electromagnetic fields at the discrete level, and we obtain
physically relevant solutions. After the discretization of the differential equations we
obtain a linear system of equations of the formAx = b, where the coefficient matrix
A is a large scale, sparse and complex valued. For large scale problems direct lin-
ear solvers are not always possible to implement, and Krylovsubspace methods are
common tools to solve linear systems approximately. The performance of Krylov
subspace methods highly depends on the condition number of the matrix, and for
complicated real life problems the resulting matrixA is usually ill-conditioned. For
such problems Krylov subspace methods either require too many iteration steps for
the convergence or, in the worst case, they do not converge atall. To overcome these
difficulties a good matrix preconditioner can significantlyimprove the convergence
rate of the Krylov subspace methods.

In this paper we apply the BICGSTAB iterative solution algorithm [4] with the
ILUT preconditioner [5]. In two problems we show that the ILUT preconditioner
improves the convergence rate of BICGSTAB algorithm significantly, and provides
a very accurate solution for the linear system.

2 Potential formulation of the Maxwell equations

Mathematical modeling of the electromagnetic fields is given by the Maxwell equa-
tions:

∂t D = ∇× H− J, (1a)

∂t B = −∇× E, (1b)

∇ · D = ρ , (1c)

∇ · B = 0, (1d)

where E and H ( D and B) are the electric and magnetic fields (respectively, the
electric and the magnetic flux densities). The following constitutive relations hold
for linear media:

D = ε E, B = µ H, (2) J = σ E+ Jdiff , (3)

where the dielectric permittivityε (=ε0εr), the conductivityσ , and the magnetic
permeabilityµ (=µ0µr) are assumed to be space dependent positive definite ten-
sors. The diffusive part of the carrier flows is denoted byJdiff . This way of writing
the current allows us to deal with metals in which the diffusive currents are negli-
gible, as well as with semiconductors. In the latter case thefirst term represents the
drift terms of the electron and hole currents. The free spacedielectric permittivity
and magnetic permeability are defined byε0 andµ0, respectively. Before entering
into the manipulations of the Maxwell equations, we will discuss some subtle issues
that are present in the above set of equations, and which are quite important for a
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successful numerical solution. The electric fieldE is a 1-form in the differential
geometrical meaning. It implies that it is an object assigned to a link of a compu-
tational grid. The displacementD is a 2-form and should be assigned to surface
elements of the computational grid. To be more precise, since ρ is a 3-form, which
can be shown to be equivalent to a 0-form in three dimensions,we may assignρ
to the nodes of the grid, and thereforeD can be assigned to the faces of thedual
grid. On the other hand, the 2-formB is assigned to the faces of theprimary grid.
The 1-form H is assigned to the links of the dual grid. When keeping these con-
siderations in mind it becomes evident how the Hodge operators,ε , µ andσ must
be handled while setting up the discretization. Moreover, by knowing in which grid
and to which object in the grid a variable is assigned, we are able to give meaning
to expressions such as∇ · E. Strictly speaking, the∇· operator should act on a 2-
form. However, since the normal on a face of the dual grid coincides with a link of
the primary grid, we can apply the finite-volume technique tothis expression in the
primary grid. More details about the discretization methods can be found in [1,3].

We will now proceed with rewriting of the Maxwell equations.From the Maxwell
equations (1d) and (1b) it follows that there is a vector potentialA and a scalar
potentialV such that

B = ∇× A, (4) E = −∂t A−∇V. (5)

If we substitute (4) and (5) into (1), the potential formulation of the Maxwell
equations in the frequency domain can be written as [1]

∇× µ−1∇× A− (σ + jωε)(− jω A−∇V ) = Jdiff , (6a)

∇ · (ε(∇V + jω A)) = −ρ , in insulators and semiconductors, (6b)

∇ · ((σ + jωε)(∇V + jω A)) = 0, in metals. (6c)

For completeness, the 1-formA is assigned to the links of the primary grid and
the potentialV is assigned to the nodes of the primary grid. For the unique solution
of (6) we use the following gauge condition which is linear in the scalar and vector
potentials, namely

1
µ0

∇(∇ ·A)+ j ωεξ ∇V = 0, (7)

where 0≤ ξ ≤ 1. The above equation resembles the Coulomb gauge forξ = 0 and
the Lorentz gauge forξ = 1 and constantε. For the discretization of (6) and (7) we
refer to [1,3].

3 Short review on ILU preconditioners

There are two class of general purpose preconditioners for large linear systems: ILU
preconditioners and sparse approximate inverse preconditioners. Among ILU pre-
conditioners a common approach is to use ILU(0) factorization which uses a fixed
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sparsity pattern. This preconditioner is very ineffectivefor our problems, and the
iterative method does not converge with this preconditioner. An improvement is to
use ILU(τ) factorization,which allows more fill-in depending on the drop tolerance
τ. The drawback of this method is that the memory requirement is unknown in
advance. For ill-conditioned problems a small drop toleranceτ is required to con-
struct a good ILU(τ) preconditioner, but for large problems the factorizationis not
possible because of memory limitations. The construction of a sparse approximate
inverse for ill-conditioned problems is far more complicated and time consuming.

To overcome the memory limitation problems of an ILU(τ) preconditioner when
applied to complicated problems we use a dual threshold ILUT(p,τ) preconditioner.
Similar to the ILU(τ) preconditioner, the same dropping rule is applied based onthe
drop toleranceτ, then onlyp largest elements in the row of the L and U matrices
are kept. In the course of factorizationτ controls the computational cost whilep
controls the computer memory, for details see [5].

The computational time required for the ILUT factorizationcan be reduced by
proper reordering of the matrix elements. There are severalreordering algorithms
based on different methods. In our experiments we make a comparison between two
common reordering methods. The first method is the symmetricreverse Cuthill-
McKee reordering (SYMRCM) [6] and the second method is the approximate min-
imum degree (AMD) reordering [7].

4 Numerical experiments

In all experiments the iterative procedure is stopped if the2-norm of the relative
residual (relative to the 2-norm ofb) is reduced by a factor 10−12. We have chosen
a small reduction factor in order to observe the validity range of the preconditioner.
Several notations are used to show the properties of the preconditioner. The CPU
time required to construct the ILUT preconditioner is denoted by Pr-time and the
CPU time of BICGSTAB iterations is denoted by It-time. The density ratio of the
preconditioned versus the original system is denoted by Ratio=nnz(L+U)/nnz(A).

Fig. 1 Left: Interconnect structure of Test case 1. Right: On-chipinductor of Test case 2.
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4.1 Test case 1

In this section we present numerical experiments on an interconnect structure, see
Fig. 1 (left), with dimension in micrometers 4.4×5.5×4.24. This test case is pro-
vided by NXP semiconductors, where the operating frequencyis 500 MHz.

First we consider a coarse mesh which results in a matrix of dimension 141513.
The convergence diagram of the relative residual is given inFig. 2. Because the ma-
trix is ill-conditioned it is required to choose a small value for the drop toleranceτ
to achieve convergence. Then a proper choice ofp is found depending on the com-
plexity of the matrix and memory limitations. Note that withthe chosen values of
the drop tolerance it was impossible to construct theILU(τ) preconditioner because
of memory limitations. With the AMD reordering the iterative method requires sig-
nificantly less number of iterations as compared to the SYMRCM reordering. More
detailed performance information about both methods is given in Table1. It is clear
that the AMD reordering requires less time to construct the preconditioner, and the
iteration time with the AMD reordering is much smaller as compared to the itera-
tion time with the SYMRCM reordering. Furthermore, we note that with the AMD
reordering the required fill-in of the preconditioner is less than that with the SYM-
RCM reordering. Because of the space limitation we do not show a similar table
for the other experiments, but all of the above observationshold true for all our
experiments.

We perform a similar experiment on a fine mesh which results ina matrix of
dimension 428710. This case is more difficult and requires larger value ofp and
smaller drop toleranceτ to obtain an accurate solution. The convergence diagram
of the relative residual with the AMD reordering is given in Fig. 3 (right). Let us
mention that we failed to obtain convergence with the SYMRCMreordering.

Distribution of the 25 smallest magnitude eigenvalues of the original matrix and
the preconditioned matrix computed by the Jacobi-Davidsonmethod is given in
Fig.3 (left). It is clear that the smallest magnitude eigenvaluesof the preconditioned
matrix are shifted away from the origin, which explains the good convergence be-
havior of the BICGSTAB method with the ILUT preconditioner.

Table 1 Test case 1.Performance of the preconditioner with the two different reordering methods.

SYMRCM AMD
p τ Pr-time It-time Its Ratio Pr-time It-time It Ratio

100 10−7 1029.53325.65430 9.39 618.13 111.80189 6.24
100 10−8 1383.33579.21680 9.40 814.00 150.54231 6.28
150 10−7 1867.49300.55303 13.941046.66 76.25 104 8.62
150 10−8 2231.82273.94273 13.991154.57 74.46 99 8.71
200 10−6 1807.44600.37472 18.21 986.45 122.82147 10.57
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Fig. 2 Test case 1. Convergence diagram of the relative residual onthe coarse mesh with the
ILUT( p,τ) preconditioner.Left: SYMRCM reordering,right: AMD reordering.
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Fig. 3 Test case 1.Left: Distribution of the 25 smallest magnitude eigenvalues on the coarse mesh
of the original matrix and the preconditioned matrix with the ILUT(p,τ) preconditioner with the
AMD reordering.Right: Convergence diagram of the relative residual on the fine meshwith the
ILUT( p,τ) preconditioner with the AMD reordering.

4.2 Test case 2

In the following numerical experiments we consider an on-chip inductor. The di-
mension of the structure in micrometers is 1000×1000× 407. The inductor with
4.5 windings is provided by austriamicorsystems and contains a pattern of nwell
implants below the inductor in the active device layer. Thispattern is mimicked
here by the large cross in Fig.1 (right). The goal of this pattern is to reduce eddy
currents in the substrate. The inductor is processed in the M4 (the 4th metal layer)
and the underpath is found in M3. The goal of the electromagnetic field solving is
to compute the quality factor Q, the inductance L and the resistance R. These vari-
ables are extracted from the admittance parametersYi j. The simulation results for
the Y-parameters as well as the measurement results are shown in Fig.4.
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Fig. 4 Test case 2. Comparison of the real and imaginary parts of theY11 and Y12 parameters.

In our applications for the solution of the linear systems the AMD reordering has
proved to be more efficient than the SYMRCM reordering, therefore in the following
experiments we use only AMD reordering. Convergence diagrams of the relative
residual of the BICGSTAB iterative method with the ILUT preconditioner for the
frequencies of 1 GHz and 10 GHz are shown in Fig.5. As it is expected, for higher
frequencies more fill-in, smaller drop tolerance and more iterations are required to
achieve the same order of accuracy.

In practice the choice of the parametersp andτ is more based on the problem
and experience, see also [5]. In our applications we have made the following obser-
vations:

• For a fixed value ofp andτ0, for which a convergence is reached, further de-
creasing the drop toleranceτ < τ0 the number of iterations does not decrease
significantly but instead it requires much more time for the construction of the
preconditioner.

• For a fixed value ofτ (or p) by increasing the fill-in parameter far enough (or
by decreasing the drop tolerance ) the required time for BICGSTAB iterations is
almost constant and the most time is spent of the construction of the precondi-
tioner.

Based on our experience we suggest in practical applications for difficult problems
to start with p ≈ 50 andτ ≈ 10−5 and then follow how the error of the iterative
method behaves. If convergence is not reached then based on the first observation
we suggest at first to increase the fill-in parameter. If no convergence is reached then
decrease also the drop tolerance.

5 Conclusions

We discussed simulation of interconnect structures where the resulting linear sys-
tems after space discretization are large and ill-conditioned. We have shown that the
ILUT preconditioner is well applicable for these large and difficult problems and
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Fig. 5 Test case 2. Convergence diagram of the relative residual with the ILUT(p,τ) precondi-
tioner.Left: Frequency is 1GHz,right: Frequency is 10 GHz.

provides very accurate solution. The use of AMD reordering is necessary for such
complicated problems. The performance of the preconditioner was demonstrated in
two different structures.
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