Simulation of large interconnect structuresusing
| L U-type preconditioner
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Abstract For a fast simulation of interconnect structures we conspecondi-
tioned iterative solution methods for large complex valliedar systems. In many
applications the discretized equations result in ill-dtinded matrices, and effi-
cient preconditioners are indispensable to solve the lisgatems accurately. We
apply the dual threshold incomplete LU (ILUT) factorizatias preconditioners for
the BICGSTAB iterative solver. On complicated problemshwat different range
of frequencies we show that the BICGSTAB method with the ILf&conditioner
provides a very accurate solution of the linear systems.

1 Introduction

With the increasing complexity of on-chip interconnectistures more robust and
fast simulation methods are necessary to understand tlawioebf electromagnetic
fields in such complex structures. For a better understgnafithe performance of
these structures field simulation approaches provide nmsight about the behavior
of the electromagnetic fields.

The governing equations of the electromagnetic fields arengby the Maxwell
equations. For many applications the potential formufatid the Maxwell equa-
tions is used which has several advantages. In particalainterconnect structures
the potential formulation allows separate modeling of dfddielectric, semicon-
ductor and metallic regions, which reduces the computatibme essentiallyZ, 2].
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The differential operators are discretized using the uBoiée-volume methods for
the electric potential and the charge density. Howeveritfermagnetic vector po-
tential the finite-volume method is replaced by a 'finitefaoe method’ 8], whose
origin is found in Stokes’ theorem in contrary to the finitekyme methods that are
rooted in Gauss’ theoren]. This discretization method preserves important phys-
ical characteristics of the electromagnetic fields at tiserdite level, and we obtain
physically relevant solutions. After the discretizatidrlee differential equations we
obtain a linear system of equations of the fofsn= b, where the coefficient matrix
Ais a large scale, sparse and complex valued. For large sgatidéems direct lin-
ear solvers are not always possible to implement, and Krslinspace methods are
common tools to solve linear systems approximately. Théopmance of Krylov
subspace methods highly depends on the condition numb&eahatrix, and for
complicated real life problems the resulting matfixs usually ill-conditioned. For
such problems Krylov subspace methods either require tatyriberation steps for
the convergence or, in the worst case, they do not conveajk @b overcome these
difficulties a good matrix preconditioner can significaritiyprove the convergence
rate of the Krylov subspace methods.

In this paper we apply the BICGSTAB iterative solution algfan [4] with the
ILUT preconditioner b]. In two problems we show that the ILUT preconditioner
improves the convergence rate of BICGSTAB algorithm sigaifilly, and provides
a very accurate solution for the linear system.

2 Potential formulation of the Maxwell equations

Mathematical modeling of the electromagnetic fields is gibg the Maxwell equa-
tions:

D=0xH-J, (1a) O0-D=p, (1c)
6 B=-0x E, (1b) O-B=0, (1d)
where E and H ( D and B) are the electric and magnetic fields (respectively, the

electric and the magnetic flux densities). The following stiintive relations hold
for linear media:
D=¢E, B=uH, (2 J =0 E+ Jgif, 3)

where the dielectric permittivitg (=&o¢&; ), the conductivityo, and the magnetic
permeabilityu (= oyt ) are assumed to be space dependent positive definite ten-
sors. The diffusive part of the carrier flows is denoted Jyy;. This way of writing
the current allows us to deal with metals in which the diffiesturrents are negli-
gible, as well as with semiconductors. In the latter casditbeterm represents the
drift terms of the electron and hole currents. The free sphekectric permittivity
and magnetic permeability are defined dgyand Ly, respectively. Before entering
into the manipulations of the Maxwell equations, we willaliss some subtle issues
that are present in the above set of equations, and whichuates important for a
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successful numerical solution. The electric fidldis a 1-form in the differential
geometrical meaning. It implies that it is an object assigttea link of a compu-
tational grid. The displacemer is a 2-form and should be assigned to surface
elements of the computational grid. To be more precisegginis a 3-form, which
can be shown to be equivalent to a O-form in three dimensieasnay assigm
to the nodes of the grid, and therefoE can be assigned to the faces of thal
grid. On the other hand, the 2-for8 is assigned to the faces of thbemary grid.
The 1-form H is assigned to the links of the dual grid. When keeping these ¢
siderations in mind it becomes evident how the Hodge opesatq 4 ando must
be handled while setting up the discretization. Moreowkowing in which grid
and to which object in the grid a variable is assigned, we hle @ give meaning
to expressions such as- E. Strictly speaking, thé&l- operator should act on a 2-
form. However, since the normal on a face of the dual grid cdies with a link of
the primary grid, we can apply the finite-volume techniquéhie expression in the
primary grid. More details about the discretization methodn be found in1], 3].

We will now proceed with rewriting of the Maxwell equatio®som the Maxwell
equations 1d) and (Lb) it follows that there is a vector potentigh and a scalar
potentialV such that

B=0Ox A, () E=-A-0V. (5

If we substitute 4) and 6) into (1), the potential formulation of the Maxwell
equations in the frequency domain can be writtenlas [

Oxpul0x A—(0+ jwe)(—jo A—0V) = g, (6a)
O-(e(0V+jwA)) =—p, in insulators and semiconductors (6b)
O -((o+ jwe)(OV + jwA)) =0, in metals (6¢c)

For completeness, the 1-fori is assigned to the links of the primary grid and
the potentiaV is assigned to the nodes of the primary grid. For the uniguigisa
of (6) we use the following gauge condition which is linear in tisalar and vector
potentials, namely

uiD(D-A)Jrjwevazo, (7)
0

where 0< & < 1. The above equation resembles the Coulomb gaugé fed and
the Lorentz gauge fof = 1 and constant. For the discretization o) and (7) we
refer to [1, 3].

3 Short review on I LU preconditioners

There are two class of general purpose preconditionerafgellinear systems: ILU
preconditioners and sparse approximate inverse pre¢ondis. Among ILU pre-
conditioners a common approach is to use ILU(0) factormatvhich uses a fixed
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sparsity pattern. This preconditioner is very ineffectige our problems, and the
iterative method does not converge with this preconditioAe improvement is to
use ILU(r) factorization,which allows more fill-in depending on theg tolerance
7. The drawback of this method is that the memory requiremeninknown in
advance. For ill-conditioned problems a small drop toleeanis required to con-
struct a good ILUt) preconditioner, but for large problems the factorizatismot
possible because of memory limitations. The constructioam sparse approximate
inverse for ill-conditioned problems is far more complie@&and time consuming.

To overcome the memory limitation problems of an Ilipreconditioner when
applied to complicated problems we use a dual threshold (ipJil) preconditioner.
Similar to the ILU(r) preconditioner, the same dropping rule is applied basdti@n
drop tolerance, then onlyp largest elements in the row of the L and U matrices
are kept. In the course of factorizatiancontrols the computational cost whife
controls the computer memory, for details sBg [

The computational time required for the ILUT factorizatioan be reduced by
proper reordering of the matrix elements. There are sevewmtering algorithms
based on different methods. In our experiments we make a aosom between two
common reordering methods. The first method is the symmasdxierse Cuthill-
McKee reordering (SYMRCM)g] and the second method is the approximate min-
imum degree (AMD) reordering/].

4 Numerical experiments

In all experiments the iterative procedure is stopped if 2h@orm of the relative
residual (relative to the 2-norm @j is reduced by a factor 13 We have chosen
a small reduction factor in order to observe the validitygaof the preconditioner.
Several notations are used to show the properties of theopd#toner. The CPU
time required to construct the ILUT preconditioner is dextbby Pr-time and the
CPU time of BICGSTAB iterations is denoted by It-time. Thansi¢y ratio of the

preconditioned versus the original system is denoted bipRaiz(L + U ) /nnz(A).

Fig. 1 Left: Interconnect structure of Test case 1. Right: On-c¢hguctor of Test case 2.
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4.1 Testcase 1l

In this section we present numerical experiments on andaterect structure, see
Fig. 1 (left), with dimension in micrometers4x 5.5 x 4.24. This test case is pro-
vided by NXP semiconductors, where the operating frequens90 MHz.

First we consider a coarse mesh which results in a matrixraedsion 141513.
The convergence diagram of the relative residual is givéfign2. Because the ma-
trix is ill-conditioned it is required to choose a small valfor the drop tolerance
to achieve convergence. Then a proper choicp isffound depending on the com-
plexity of the matrix and memory limitations. Note that witie chosen values of
the drop tolerance it was impossible to constructittié (1) preconditioner because
of memory limitations. With the AMD reordering the iteragivnethod requires sig-
nificantly less number of iterations as compared to the SYMR€ordering. More
detailed performance information about both methods ismia Tablel. It is clear
that the AMD reordering requires less time to construct trecpnditioner, and the
iteration time with the AMD reordering is much smaller as quared to the itera-
tion time with the SYMRCM reordering. Furthermore, we ndtattwith the AMD
reordering the required fill-in of the preconditioner isdgban that with the SYM-
RCM reordering. Because of the space limitation we do nowsadimilar table
for the other experiments, but all of the above observattorid true for all our
experiments.

We perform a similar experiment on a fine mesh which resulta matrix of
dimension 428710. This case is more difficult and requiregelavalue ofp and
smaller drop tolerance to obtain an accurate solution. The convergence diagram
of the relative residual with the AMD reordering is given iilgF3 (right). Let us
mention that we failed to obtain convergence with the SYMR@#rdering.

Distribution of the 25 smallest magnitude eigenvalues efdriginal matrix and
the preconditioned matrix computed by the Jacobi-Davids@thod is given in
Fig. 3 (left). Itis clear that the smallest magnitude eigenvabfdébe preconditioned
matrix are shifted away from the origin, which explains tted convergence be-
havior of the BICGSTAB method with the ILUT preconditioner.

Table 1 Test case 1.Performance of the preconditioner with the fiffereint reordering methods.

SYMRCM AMD

p| T |Prtime|lt-time| Its |Ratio| Pr-time|lt-time| It [Ratio
100{10~7]1029.53325.65430 9.39( 618.13[111.80189 6.24
100{10-%[1383.33579.21680 9.40[ 814.00[150.54231] 6.28
150{10~"[1867.49300.5530313.941046.66 76.25|104] 8.62
150{107%[2231.84273.9427313.991154.57 74.46] 99 8.71
200{10 ®1807.44600.371472/18.21 986.45(122.84147/10.57
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Fig. 2 Test case 1. Convergence diagram of the relative residugh@rtoarse mesh with the
ILUT(p, T) preconditionerLeft: SYMRCM reordering right: AMD reordering.
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Fig. 3 Test case 1Left: Distribution of the 25 smallest magnitude eigenvalues erctiarse mesh
of the original matrix and the preconditioned matrix witleth.UT(p, T) preconditioner with the
AMD reordering.Right: Convergence diagram of the relative residual on the fine meththe

ILUT(p, T) preconditioner with the AMD reordering.

4.2 Test case 2

In the following numerical experiments we consider an oipéhductor. The di-
mension of the structure in micrometers is 1000000x 407. The inductor with
4.5 windings is provided by austriamicorsystems and caostai pattern of nwell
implants below the inductor in the active device layer. Tiédgtern is mimicked
here by the large cross in Fig.(right). The goal of this pattern is to reduce eddy
currents in the substrate. The inductor is processed in théthve 4th metal layer)
and the underpath is found in M3. The goal of the electromtigfield solving is

to compute the quality factor Q, the inductance L and thestaste R. These vari-
ables are extracted from the admittance paramétgrd he simulation results for
the Y-parameters as well as the measurement results areshdig. 4.
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Fig. 4 Test case 2. Comparison of the real and imaginary parts of tieand Y12 parameters.

In our applications for the solution of the linear systenesAMD reordering has
proved to be more efficient than the SYMRCM reordering, tfaeein the following
experiments we use only AMD reordering. Convergence diagraf the relative
residual of the BICGSTAB iterative method with the ILUT poeditioner for the
frequencies of 1 GHz and 10 GHz are shown in BigAs it is expected, for higher
frequencies more fill-in, smaller drop tolerance and mageations are required to
achieve the same order of accuracy.

In practice the choice of the paramet@grandt is more based on the problem
and experience, see al€g}.[In our applications we have made the following obser-
vations:

e For a fixed value ofp and 1o, for which a convergence is reached, further de-
creasing the drop toleranae< 19 the number of iterations does not decrease
significantly but instead it requires much more time for tlo@struction of the
preconditioner.

e For a fixed value oft (or p) by increasing the fill-in parameter far enough (or
by decreasing the drop tolerance ) the required time for BBTAB iterations is
almost constant and the most time is spent of the construofiche precondi-
tioner.

Based on our experience we suggest in practical applicafmrdifficult problems
to start withp ~ 50 andt ~ 10~° and then follow how the error of the iterative
method behaves. If convergence is not reached then baséx dinst observation
we suggest at first to increase the fill-in parameter. If noveogence is reached then
decrease also the drop tolerance.

5 Conclusions

We discussed simulation of interconnect structures whegadsulting linear sys-
tems after space discretization are large and ill-conaiittcb We have shown that the
ILUT preconditioner is well applicable for these large anfficult problems and
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Fig. 5 Test case 2. Convergence diagram of the relative residual twe ILUT(p, T) precondi-
tioner. Left: Frequency is 1GHz,ight: Frequency is 10 GHz.

provides very accurate solution. The use of AMD reordersgecessary for such
complicated problems. The performance of the precondtiaras demonstrated in
two different structures.
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